• This record comes from PubMed

Membrane Permeability and Responsiveness Drive Performance: Linking Structural Features with the Antitumor Effectiveness of Doxorubicin-Loaded Stimuli-Triggered Polymersomes

. 2024 Jul 08 ; 25 (7) : 4192-4202. [epub] 20240625

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

The permeability and responsiveness of polymer membranes are absolutely relevant in the design of polymersomes for cargo delivery. Accordingly, we herein correlate the structural features, permeability, and responsiveness of doxorubicin-loaded (DOX-loaded) nonresponsive and stimuli-responsive polymersomes with their in vitro and in vivo antitumor performance. Polymer vesicles were produced using amphiphilic block copolymers containing a hydrophilic poly[N-(2-hydroxypropyl)methacrylamide] (PHPMA) segment linked to poly[N-(4-isopropylphenylacetamide)ethyl methacrylate] (PPPhA, nonresponsive block), poly[4-(4,4,5,5-tetra-methyl-1,3,2-dioxaborolan-2-yl)benzyl methacrylate] [PbAPE, reactive oxygen species (ROS)-responsive block], or poly[2-(diisopropylamino)ethyl methacrylate] (PDPA, pH-responsive block). The PDPA-based polymersomes demonstrated outstanding biological performance with antitumor activity notably enhanced compared to their counterparts. We attribute this behavior to a fast-triggered DOX release in acidic tumor environments as induced by pH-responsive polymersome disassembly at pH < 6.8. Possibly, an insufficient ROS concentration in the selected tumor model attenuates the rate of ROS-responsive vesicle degradation, whereas the nonresponsive nature of the PPPhA block remarkably impacts the performance of such potential nanomedicines.

See more in PubMed

Tanner P.; Baumann P.; Enea R.; Onaca O.; Palivan C.; Meier W. Polymeric Vesicles: From Drug Carriers to Nanoreactors and Artificial Organelles. Acc. Chem. Res. 2011, 44 (10), 1039–1049. 10.1021/ar200036k. PubMed DOI

Maffeis V.; Heuberger L.; Nikoletić A.; Schoenenberger C. A.; Palivan C. G. Synthetic Cells Revisited: Artificial Cells Construction Using Polymeric Building Blocks. Adv. Sci. 2024, 11, 2305837.10.1002/advs.202305837. PubMed DOI PMC

Che H.; van Hest J. C. M. Adaptive Polymersome Nanoreactors. ChemNanoMat 2019, 5 (9), 1092–1109. 10.1002/cnma.201900245. DOI

Langowska K.; Palivan C. G.; Meier W. Polymer Nanoreactors Shown to Produce and Release Antibiotics Locally. Chem. Commun. 2013, 49 (2), 128–130. 10.1039/C2CC36345C. PubMed DOI

Kim K. T.; Cornelissen J. J. L. M.; Nolte R. J. M.; Van Hest J. C. M. A Polymersome Nanoreactor with Controllable Permeability Induced by Stimuli-Responsive Block Copolymers. Adv. Mater. 2009, 21 (27), 2787–2791. 10.1002/adma.200900300. DOI

Gaitzsch J.; Appelhans D.; Wang L.; Battaglia G.; Voit B. Synthetic Bio-Nanoreactor: Mechanical and Chemical Control of Polymersome Membrane Permeability. Angew. Chem., Int. Ed. 2012, 51 (18), 4448–4451. 10.1002/anie.201108814. PubMed DOI

Albuquerque L. J. C.; Sincari V.; Jager A.; Konefał R.; Panek J.; Cernoch P.; Pavlova E.; Stepanek P.; Giacomelli F. C.; Jager E. Microfluidic-Assisted Engineering of Quasi-Monodisperse Ph-Responsive Polymersomes toward Advanced Platforms for the Intracellular Delivery of Hydrophilic Therapeutics. Langmuir 2019, 35 (25), 8363–8372. 10.1021/acs.langmuir.9b01009. PubMed DOI

Rideau E.; Dimova R.; Schwille P.; Wurm F. R.; Landfester K. Liposomes and Polymersomes: A Comparative Review towards Cell Mimicking. Chem. Soc. Rev. 2018, 47 (23), 8572–8610. 10.1039/C8CS00162F. PubMed DOI

Moreno S.; Hübner H.; Effenberg C.; Boye S.; Ramuglia A.; Schmitt D.; Voit B.; Weidinger I. M.; Gallei M.; Appelhans D. Redox- and PH-Responsive Polymersomes with Ferrocene Moieties Exhibiting Peroxidase-like, Chemoenzymatic Activity and H2O2-Responsive Release Behavior. Biomacromolecules 2022, 23 (11), 4655–4667. 10.1021/acs.biomac.2c00901. PubMed DOI

Kim J.; Kim K. T. Polymersome-Based Modular Nanoreactors with Size-Selective Transmembrane Permeability. ACS Appl. Mater. Interfaces 2020, 12 (20), 23502–23513. 10.1021/acsami.0c05637. PubMed DOI

Zhu Y.; Cao S.; Huo M.; van Hest J. C. M.; Che H. Recent Advances in Permeable Polymersomes: Fabrication, Responsiveness, and Applications. Chem. Sci. 2023, 14, 7411–7437. 10.1039/d3sc01707a. PubMed DOI PMC

Bellomo E. G.; Wyrsta M. D.; Pakstis L.; Pochan D. J.; Deming T. J. Stimuli-Responsive Polypeptide Vesicles by Conformation-Specific Assembly. Nat. Mater. 2004, 3 (4), 244–248. 10.1038/nmat1093. PubMed DOI

Hu X.; Zhang Y.; Xie Z.; Jing X.; Bellotti A.; Gu Z. Stimuli-Responsive Polymersomes for Biomedical Applications. Biomacromolecules 2017, 18 (3), 649–673. 10.1021/acs.biomac.6b01704. PubMed DOI

Thambi T.; Park J. H.; Lee D. S. Stimuli-Responsive Polymersomes for Cancer Therapy. Biomater. Sci. 2016, 4 (1), 55–69. 10.1039/C5BM00268K. PubMed DOI

Liu G.; Tan J.; Cen J.; Zhang G.; Hu J.; Liu S. Oscillating the Local Milieu of Polymersome Interiors via Single Input-Regulated Bilayer Crosslinking and Permeability Tuning. Nat. Commun. 2022, 13 (1), 585–612. 10.1038/s41467-022-28227-6. PubMed DOI PMC

Wang X.; Yao C.; Zhang G.; Liu S. Regulating Vesicle Bilayer Permeability and Selectivity via Stimuli-Triggered Polymersome-to-PICsome Transition. Nat. Commun. 2020, 11 (1), 1524–1613. 10.1038/s41467-020-15304-x. PubMed DOI PMC

Liu J.; Jia B.; Li Z.; Li W. Reactive Oxygen Species-Responsive Polymer Drug Delivery Systems. Front. Bioeng. Biotechnol. 2023, 11, 1115603.10.3389/fbioe.2023.1115603. PubMed DOI PMC

Corbet C.; Feron O. Tumour Acidosis: From the Passenger to the Driver’s Seat. Nat. Rev. Cancer 2017, 17 (10), 577–593. 10.1038/nrc.2017.77. PubMed DOI

Joseph A.; Contini C.; Cecchin D.; Nyberg S.; Ruiz-Perez L.; Gaitzsch J.; Fullstone G.; Tian X.; Azizi J.; Preston J.; Volpe G.; Battaglia G. Chemotactic Synthetic Vesicles: Design and Applications in Blood-Brain Barrier Crossing. Sci. Adv. 2017, 3 (8), e170036210.1126/sciadv.1700362. PubMed DOI PMC

Li Y.; Zhao T.; Wang C.; Lin Z.; Huang G.; Sumer B. D.; Gao J. Molecular Basis of Cooperativity in PH-Triggered Supramolecular Self-Assembly. Nat. Commun. 2016, 7 (1), 13214–13219. 10.1038/ncomms13214. PubMed DOI PMC

Giacomelli F. C.; Stepánek P.; Giacomelli C.; Schmidt V.; Jäger E.; Jäger A.; Ulbrich K. PH-Triggered Block Copolymer Micelles Based on a PH-Responsive PDPA (Poly[2-(Diisopropylamino)Ethyl Methacrylate]) Inner Core and a PEO (Poly(Ethylene Oxide)) Outer Shell as a Potential Tool for the Cancer Therapy. Soft Matter 2011, 7 (19), 9316–9325. 10.1039/c1sm05992k. DOI

Gao F.; Xiong Z. Reactive Oxygen Species Responsive Polymers for Drug Delivery Systems. Front. Chem. 2021, 9, 649048.10.3389/fchem.2021.649048. PubMed DOI PMC

Einfalt T.; Witzigmann D.; Edlinger C.; Sieber S.; Goers R.; Najer A.; Spulber M.; Onaca-Fischer O.; Huwyler J.; Palivan C. G. Biomimetic Artificial Organelles with in Vitro and in Vivo Activity Triggered by Reduction in Microenvironment. Nat. Commun. 2018, 9 (1), 1127–1212. 10.1038/s41467-018-03560-x. PubMed DOI PMC

Zheng M.; Liu Y.; Wang Y.; Zhang D.; Zou Y.; Ruan W.; Yin J.; Tao W.; Park J. B.; Shi B. ROS-Responsive Polymeric SiRNA Nanomedicine Stabilized by Triple Interactions for the Robust Glioblastoma Combinational RNAi Therapy. Adv. Mater. 2019, 31 (37), 1903277.10.1002/adma.201903277. PubMed DOI

Deng Z.; Qian Y.; Yu Y.; Liu G.; Hu J.; Zhang G.; Liu S. Engineering Intracellular Delivery Nanocarriers and Nanoreactors from Oxidation-Responsive Polymersomes via Synchronized Bilayer Cross-Linking and Permeabilizing Inside Live Cells. J. Am. Chem. Soc. 2016, 138 (33), 10452–10466. 10.1021/jacs.6b04115. PubMed DOI

Matoori S.; Leroux J. C. Twenty-Five Years of Polymersomes: Lost in Translation?. Mater. Horiz. 2020, 7 (5), 1297–1309. 10.1039/C9MH01669D. DOI

Jäger E.; Humajová J.; Dölen Y.; Kučka J.; Jäger A.; Konefał R.; Pankrác J.; Pavlova E.; Heizer T.; Šefc L.; Hrubý M.; Figdor C. G.; Verdoes M. Enhanced Antitumor Efficacy through an “AND Gate” Reactive Oxygen-Species-Dependent PH-Responsive Nanomedicine Approach. Adv. Healthcare Mater. 2021, 10 (13), 2100304.10.1002/adhm.202100304. PubMed DOI

Jäger E.; Sincari V.; Albuquerque L. J. C.; Jäger A.; Humajova J.; Kucka J.; Pankrac J.; Paral P.; Heizer T.; Janouskova O.; Konefał R.; Pavlova E.; Sedlacek O.; Giacomelli F. C.; Pouckova P.; Sefc L.; Stepanek P.; Hruby M. Reactive Oxygen Species (ROS)-Responsive Polymersomes with Site-Specific Chemotherapeutic Delivery into Tumors via Spacer Design Chemistry. Biomacromolecules 2020, 21 (4), 1437–1449. 10.1021/acs.biomac.9b01748. PubMed DOI

de Oliveira F. A.; Batista C. C. d. S.; Černoch P.; Sincari V.; Jäger A.; Jäger E.; Giacomelli F. C. Role of Membrane Features on the Permeability Behavior of Polymersomes and the Potential Impacts on Drug Encapsulation and Release. Biomacromolecules 2023, 24 (5), 2291–2300. 10.1021/acs.biomac.3c00162. PubMed DOI

Hassan P. A.; Rana S.; Verma G. Making Sense of Brownian Motion: Colloid Characterization by Dynamic Light Scattering. Langmuir 2015, 31, 3–12. 10.1021/la501789z. PubMed DOI

Kohlbrecher J.; Breßler I.; Barty A. Updates in SASfit for Fitting Analytical Expressions and Numerical Models to Small-Angle Scattering Patterns. J. Appl. Crystallogr. 2022, 55, 1677–1688. 10.1107/S1600576722009037. PubMed DOI PMC

Albuquerque L. J. C.; Sincari V.; Jäger A.; Kucka J.; Humajova J.; Pankrac J.; Paral P.; Heizer T.; Janouškova O.; Davidovich I.; Talmon Y.; Pouckova P.; Štěpánek P.; Sefc L.; Hruby M.; Giacomelli F. C.; Jäger E. PH-Responsive Polymersome-Mediated Delivery of Doxorubicin into Tumor Sites Enhances the Therapeutic Efficacy and Reduces Cardiotoxic Effects. J. Controlled Release 2021, 332, 529–538. 10.1016/j.jconrel.2021.03.013. PubMed DOI

de Oliveira F. A.; Albuquerque L. J. C.; Riske K. A.; Jäger E.; Giacomelli F. C. Outstanding Protein-Repellent Feature of Soft Nanoparticles Based on Poly(N-(2-Hydroxypropyl) Methacrylamide) Outer Shells. J. Colloid Interface Sci. 2020, 574, 260–271. 10.1016/j.jcis.2020.04.048. PubMed DOI

Alberg I.; Kramer S.; Schinnerer M.; Hu Q.; Seidl C.; Leps C.; Drude N.; Möckel D.; Rijcken C.; Lammers T.; Diken M.; Maskos M.; Morsbach S.; Landfester K.; Tenzer S.; Barz M.; Zentel R. Polymeric Nanoparticles with Neglectable Protein Corona. Small 2020, 16 (18), 1907574.10.1002/smll.201907574. PubMed DOI

Abdelmohsen L. K. E. A.; Rikken R. S. M.; Christianen P. C. M.; van Hest J. C. M.; Wilson D. A. Shape Characterization of Polymersome Morphologies via Light Scattering Techniques. Polymer 2016, 107, 445–449. 10.1016/j.polymer.2016.06.067. DOI

Fu J.; Li X. Y.; Ng D. K. P.; Wu C. Encapsulation of Phthalocyanines in Biodegradable Poly(Sebacic Anhydride) Nanoparticles. Langmuir 2002, 18 (10), 3843–3847. 10.1021/la011764a. DOI

Patterson J. P.; Robin M. P.; Chassenieux C.; Colombani O.; O’Reilly R. K. The Analysis of Solution Self-Assembled Polymeric Nanomaterials. Chem. Soc. Rev. 2014, 43 (8), 2412–2425. 10.1039/C3CS60454C. PubMed DOI

Černoch P.; Jager A.; Černochová Z.; Sincari V.; Albuquerque L. J. C.; Konefal R.; Pavlova E.; Giacomelli F. C.; Jager E. Engineering of PH-Triggered Nanoplatforms Based on Novel Poly(2-Methyl-2-Oxazoline)-: B-Poly[2-(Diisopropylamino)Ethyl Methacrylate] Diblock Copolymers with Tunable Morphologies for Biomedical Applications. Polym. Chem. 2021, 12 (19), 2868–2880. 10.1039/d1py00141h. DOI

Alves A. C.; Magarkar A.; Horta M.; Lima J. L. F. C.; Bunker A.; Nunes C.; Reis S. Influence of Doxorubicin on Model Cell Membrane Properties: Insights from in Vitro and in Silico Studies. Sci. Rep. 2017, 7 (1), 6343.10.1038/s41598-017-06445-z. PubMed DOI PMC

Jin Z. H.; Jin M. J.; Jiang C. G.; Yin X. Z.; Jin S. X.; Quan X. Q.; Gao Z. G. Evaluation of Doxorubicin-Loaded PH-Sensitive Polymeric Micelle Release from Tumor Blood Vessels and Anticancer Efficacy Using a Dorsal Skin-Fold Window Chamber Model. Acta Pharmacol. Sin. 2014, 35 (6), 839–845. 10.1038/aps.2014.12. PubMed DOI PMC

McRae Page S.; Henchey E.; Chen X.; Schneider S.; Emrick T. Efficacy of PolyMPC-DOX Prodrugs in 4T1 Tumor-Bearing Mice. Mol. Pharm. 2014, 11 (5), 1715–1720. 10.1021/mp500009r. PubMed DOI PMC

Podyacheva E. Y.; Kushnareva E. A.; Karpov A. A.; Toropova Y. G. Analysis of Models of Doxorubicin-Induced Cardiomyopathy in Rats and Mice. A Modern View from the Perspective of the Pathophysiologist and the Clinician. Front. Pharmacol 2021, 12, 670479.10.3389/fphar.2021.670479. PubMed DOI PMC

Olson L. E.; Bedja D.; Alvey S. J.; Cardounel A. J.; Gabrielson K. L.; Reeves R. H. Protection from Doxorubicin-Induced Cardiac Toxicity in Mice with a Null Allele of Carbonyl Reductase 11. Cancer Res. 2003, 63, 6602. PubMed

Poondru S.; Parchment R. E.; Purohit V.; Lorusso P.; Horwitz J. P.; Hazeldine S. T.; Polin L.; Corbett T.; Jasti B. R. Lack of in Vitro-in Vivo Correlation of a Novel Investigational Anticancer Agent, SH 30. Invest. New Drugs 2002, 20, 23–33. 10.1023/a:1014457510073. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...