An automated method to evaluate the enzyme kinetics of β-glucosidases
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27862518
PubMed Central
PMC5275727
DOI
10.1002/pro.3078
Knihovny.cz E-zdroje
- Klíčová slova
- enzyme kinetics, fluorescence, glucose, glycoside hydrolases, lab automation, β-glucosidase,
- MeSH
- automatizace MeSH
- beta-glukosidasa chemie MeSH
- katalýza MeSH
- kinetika MeSH
- kukuřice setá enzymologie MeSH
- rostlinné proteiny chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- beta-glukosidasa MeSH
- rostlinné proteiny MeSH
Enzyme kinetic measurements are important for the characterization and engineering of biocatalysts, with applications in a wide range of research fields. The measurement of initial reaction velocity is usually slow and laborious, which motivated us to explore the possibilities for automating this process. Our model enzyme is the maize β-glucosidase Zm-p60.1. Zm-p60.1 plays a significant role in plant growth and development by regulating levels of the active plant hormone cytokinin. Zm-p60.1 belongs to a wide group of hydrolytic enzymes. Members of this group hydrolyze several different types of glucosides, releasing glucose as a secondary product. Enzyme kinetic measurements using artificial substrates are well established, but burdensome and time-consuming. Thus, they are a suitable target for process automation. Simple optical methods for enzyme kinetic measurements using natural substrates are often impossible given the optical properties of the enzymatic reaction products. However, we have developed an automated method based on glucose detection, as glucose is released from all substrates of glucosidase reactions. The presented method can obtain 24 data points from up to 15 substrate concentrations to precisely describe the enzyme kinetics. The combination of an automated liquid handling process with assays that have been optimized for measuring the initial hydrolysis velocity of β-glucosidases yields two distinct methods that are faster, cheaper, and more accurate than the established protocols.
Zobrazit více v PubMed
Bonowski F, Kitanovic A, Ruoff P, Holzwarth J, Kitanovic I, Bui VN, Lederer E, Wölfl S (2010) Computer controlled automated assay for comprehensive studies of enzyme kinetic parameters. PLoS ONE 5:e10727. PubMed PMC
Seeberger PH, Werz DB (2005) Automated synthesis of oligosaccharides as a basis for drug discovery. Nat Rev Drug Discov 4:751–763. PubMed
Chung N, Locco L, Huff KW, Bartz S, Linsley PS, Ferrer M, Strulovici B (2008) An efficient and fully automated high‐throughput transfection method for genome‐scale siRNA screens. J Biomol Screen 13:142–148. PubMed
Albers M (2004) Automated yeast two‐hybrid screening for nuclear receptor‐interacting proteins. Mol Cell Proteom 4:205–213. PubMed
Brzobohatý B, Moore I, Kristoffersen P, Bako L, Campos N, Schell J, Palme K (1993) Release of active cytokinin by a beta‐glucosidase localized to the maize root meristem. Science 262:1051–1054. PubMed
Zouhar J, Vévodová J, Marek J, Damborský J, Su XD, Brzobohatý B (2001) Insights into the functional architecture of the catalytic center of a maize beta‐glucosidase Zm‐p60.1. Plant Physiol 127:973–985. PubMed PMC
Dopitová R, Mazura P, Janda L, Chaloupková R, Jeřábek P, Damborský J, Filipi T, Kiran NS, Brzobohatý B (2008) Functional analysis of the aglycone‐binding site of the maize β‐glucosidase Zm‐p60.1. FEBS J 275:6123–6135. PubMed
Wei H, Wang E (2013) Nanomaterials with enzyme‐like characteristics (nanozymes): next‐generation artificial enzymes. Chem Soc Rev 42:6060–6093. PubMed
Jiao X, Song H, Zhao H, Bai W, Zhang L, Lv Y (2012) Well‐redispersed ceria nanoparticles: promising peroxidase mimetics for H2O2 and glucose detection. Anal Methods 4:3261.
Srinivasan V, Pamula VK, Fair RB (2004) Droplet‐based microfluidic lab‐on‐a‐chip for glucose detection. Anal Chim Acta 507:145–150.
Liu J, Hu X, Hou S, Wen T, Liu W, Zhu X, Yin JJ, Wu X (2012) Au@Pt core/shell nanorods with peroxidase‐ and ascorbate oxidase‐like activities for improved detection of glucose. Sensors Actuators B Chem 166/167:708–714.
Trebbi D, McGrath JM (2004) Fluorometric sucrose evaluation for sugar beet. J Agric Food Chem 52:6862–6867. PubMed
Mazura P, Fohlerová R, Brzobohatý B, Kiran NS, Janda L (2006) A new, sensitive method for enzyme kinetic studies of scarce glucosides. J Biochem Biophys Methods 68:55–63. PubMed
Rotrekl V, Nejedlá E, Kučera I, Abdallah F, Palme K, Brzobohatý B (1999) The role of cysteine residues in structure and enzyme activity of a maize β‐glucosidase. Eur J Biochem 266:1056–1065. PubMed
Le BarcH N, Grossel JM, Looten P, Mathlouthi M (2001) Kinetic study of the mutarotation of d‐glucose in concentrated aqueous solution by gas–liquid chromatography. Food Chem 74:119–124.
Filipi T, Mazura P, Janda L, Kiran NS, Brzobohatý B (2012) Engineering the cytokinin‐glucoside specificity of the maize β‐d‐glucosidase Zm‐p60.1 using site‐directed random mutagenesis. Phytochemistry 74:40–48. PubMed
Zouhar J, Nanak E, Brzobohatý B (1999) Expression, single‐step purification, and matrix‐assisted refolding of a maize cytokinin glucoside‐specific beta‐glucosidase. Protein Expr Purif 17:153–162. PubMed
Kristoffersen P, Brzobohaty B, Höhfeld I, Bako L, Melkonian M, Palme K (2000) Developmental regulation of the maize Zm‐p60.1 gene encoding a β‐glucosidase located to plastids. Planta 210:407–415. PubMed
Kiran NS, Polanská L, Fohlerová R, Mazura P, Válková M, Šmeral M, Zouhar J, Malbeck J, Dobrev PI, Machácková I, Brzobohatý B. (2006) Ectopic over‐expression of the maize β‐glucosidase Zm‐p60.1 perturbs cytokinin homeostasis in transgenic tobacco. J. Exp. Bot. 57:985–996. PubMed