Ion channel activity of transmembrane segment 6 of Escherichia coli proton-dependent manganese transporter
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
20517953
DOI
10.1002/bip.21452
Knihovny.cz E-zdroje
- MeSH
- cirkulární dichroismus MeSH
- Escherichia coli genetika metabolismus MeSH
- iontové kanály chemie genetika metabolismus MeSH
- konformace proteinů MeSH
- liposomy MeSH
- mangan metabolismus MeSH
- metoda terčíkového zámku MeSH
- molekulární sekvence - údaje MeSH
- mutageneze cílená MeSH
- mutantní proteiny chemie genetika metabolismus MeSH
- peptidové fragmenty chemie genetika metabolismus MeSH
- proteiny přenášející kationty chemie genetika metabolismus MeSH
- proteiny z Escherichia coli chemie genetika metabolismus MeSH
- sekundární struktura proteinů MeSH
- sekvence aminokyselin MeSH
- substituce aminokyselin MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- iontové kanály MeSH
- liposomy MeSH
- mangan MeSH
- MntH protein, E coli MeSH Prohlížeč
- mutantní proteiny MeSH
- peptidové fragmenty MeSH
- proteiny přenášející kationty MeSH
- proteiny z Escherichia coli MeSH
Synthetic peptides corresponding to the sixth transmembrane segment (TMS6) of secondary-active transporter MntH (Proton-dependent Manganese Transporter) from Escherichia coli and its two mutations in the functionally important conserved histidine residue were used as a model for structure-function study of MntH. The secondary structure of the peptides was estimated in different environments using circular dichroism spectroscopy. These peptides interacted with and adopted helical conformations in lipid membranes. Electrophysiological experiments demonstrated that TMS6 was able to form multi-state ion channels in model biological membranes. Electrophysiological properties of these weakly cation-selective ion channels were strongly dependent on the surrounding pH. Manganese ion, as a physiological substrate of MntH, enhanced the conductivity of TMS6 channels, influenced the transition between closed and open states, and affected the peptide conformations. Moreover, functional properties of peptides carrying two different mutations of His(211) were analogous to in vivo functional characteristics of Nramp/MntH proteins mutated at homologous residues. Hence, a single functionally important TMS can retain some of the functional properties of the full-length protein. These findings could contribute to understanding the structure-function relationship at the molecular level. However it remains unclear to what extent the peptide-specific channel activity represents a functional aspect of the full-length membrane carrier protein.
Citace poskytuje Crossref.org