Histochemical detection of GM1 ganglioside using cholera toxin-B subunit. Evaluation of critical factors optimal for in situ detection with special emphasis to acetone pre-extraction
Jazyk angličtina Země Itálie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
20558344
PubMed Central
PMC3167299
DOI
10.4081/ejh.2010.e23
PII: ejh.2010.e23
Knihovny.cz E-zdroje
- MeSH
- aceton chemie MeSH
- cholerový toxin chemie MeSH
- cholesterol analýza MeSH
- G(M1) gangliosid analýza chemie MeSH
- imunohistochemie MeSH
- játra chemie cytologie MeSH
- krysa rodu Rattus MeSH
- mozek cytologie MeSH
- potkani Wistar MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aceton MeSH
- cholerový toxin MeSH
- cholesterol MeSH
- G(M1) gangliosid MeSH
A comparison of histochemical detection of GM1 ganglioside in cryostat sections using cholera toxin B-subunit after fixation with 4% formaldehyde and dry acetone gave tissue-dependent results. In the liver no pre-treatment showed detectable differences related to GM1 reaction products, while studies in the brain showed the superiority of acetone pre-extraction (followed by formaldehyde), which yielded sharper images compared with the diffuse, blurred staining pattern associated with formaldehyde. Therefore, the aim of our study was to define the optimal conditions for the GM1 detection using cholera toxin B-subunit. Ganglioside extractability with acetone, the ever neglected topic, was tested comparing anhydrous acetone with acetone containing admixture of water. TLC analysis of acetone extractable GM1 ganglioside from liver sections did not exceed 2% of the total GM1 ganglioside content using anhydrous acetone at -20 degrees C, and 4% at room temperature. The loss increased to 30.5% using 9:1 acetone/water. Similarly, photometric analysis of lipid sialic acid, extracted from dried liver homogenates with anhydrous acetone, showed the loss of gangliosides into acetone 3.0 +/- 0.3% only. The loss from dried brain homogenate was 9.5 +/- 1.1%. Thus, anhydrous conditions (dry tissue samples and anhydrous acetone) are crucial factors for optimal in situ ganglioside detection using acetone pre-treatment. This ensures effective physical fixation, especially in tissues rich in polar lipids (precipitation, prevention of in situ diffusion), and removal of cholesterol, which can act as a hydrophobic blocking barrier.
Zobrazit více v PubMed
Hakomori S. Glycosphingolipids in cellular interaction differentiation and oncogenesis. In: Kanfer JN, Hakomori S, editors. Handbook of Lipid Research. Vol.3. Sphingolipid Biochemistry. Plenum Press; New York, London: 1983. pp. 327–336.
Hakomori S. Glycosynapses: microdomains controlling carbohydrate-dependent cell adhesion and signaling. An Acad Bras Cienc. 2004;76:553–72. PubMed
Sonnino S, Mauri L, Chigorno V, Prinetti A. Gangliosides as components of lipid membrane domains. Glycobiology. 2007;17:1R–13R. PubMed
Hakomori SI. Structure and function of glycosphingolipids and sphingolipids: Recollections and future trends. Biochim Biophys Acta. 2008;1780:325–46. PubMed PMC
Holmgren J. Receptors for cholera toxin and Escherichia coli heat-labile enterotoxin revisited. Prog Brain Res. 1994;101:163–77. PubMed
Fukuta S, Magnani JL, Twiddy EM, Holmes RK, Ginsburg V. Comparison of the carbohydrate-binding specificities of Cholera toxin and Escherichia coli heat-labile enterotoxins LTh-I, LHT-IIa, and LHT-IIb. Infect Immun. 1988;56:1748–53. PubMed PMC
MacKenzie CR, Hirama T, Lee KK, Altman A, Young NM. Quantitative analysis of acterial toxin affinity and specificity for glycolipid receptors by surface plasmon resonance. J Biol Chem. 1997;272:5533–8. PubMed
Kotani M, Kawashima I, Ozawa H, Terashima T, Tai T. Differential distribution of major gangliosides in rat central nervous system detected by specific monoclonal antibodies. Glycobiology. 1993;3:137–46. PubMed
Chen Y, Qin J, Chen ZW. Fluorescence-topographic NSOM directly visualizes peak-valley polarities of GM1/GM3 rafts in cell membrane fluctuations. J Lipid Res. 2008;49:2268–75. PubMed PMC
Schwarz A, Futerman AH. The localization of gangliosides in neurons of the central nervous system: the use of anti-ganglioside antibodies. Biochim Biophys Acta. 1996;1286:247–67. PubMed
Schwarz A, Futerman AH. Immunolocalization of gangliosides by light microscopy using anti-ganglioside antibodies. Methods Enzymol. 2000;312:179–87. PubMed
Kotani M, Kawashima I, Ozawa H, Ogura K, Ishizuka I, Terashima T, et al. Immunohistochemical localization of minor gangliosides in the rat central nervous system. Glycobiology. 1994;4:855–65. PubMed
Chark D, Nutikka A, Trusevych N, Kuzmina J, Lingwood C. Differential carbohydrate epitope recognition of globotriaosyl ceramide by verotoxins and a monoclonal antibody. Eur J Biochem. 2004;271:405–17. PubMed
Elleder M, Lojda Z. Studies in lipid histochemistry. VI. Problems of extraction with aceton in lipid histochemistry. Histochemie. 1971;28:68–87. PubMed
Schwarz A, Futerman AH. Determination of the localization of gangliosides using anti-ganglioside antibodies: comparison of fixation methods. J Histochem Cytochem. 1997;45:611–8. PubMed
Ledeen RW, Yu RK, Eng LF. Gangliosides of human myelin: sialosylgalactosylceramide (G7) as a major component. J Neurochem. 1973;21:829–39. PubMed
Svennerholm L. Quantitative estimation of sialic acids. II. A colorimetric resorcinol-hydrochloric acid method. Biochim Biophys Acta. 1957;24:604–11. PubMed
Jirkovská M, Majer F, Šmídová J, Stríteský J, Shaik GM, Dráber P, et al. Changes in GM1 ganglioside content and localization in cholestatic rat liver. Glycoconj J. 2007;24:231–41. PubMed
Ellerbe P, Meiselman S, Sniegoski LT, Welch MJ, White E. Determination of serum cholesterol by a modification of the isotope dilution mass spectrometric definitive method. Anal Chem. 1989;61:1718–23. PubMed
Ilangumaran S, Hoessli D. Effects of cholesterol depletion by cyclodextrin on the sphingolipid microdomains of the plasma membrane. Biochem J. 1998;335:433–40. PubMed PMC
Kusunoki S, Chiba A, Hirabayashi Y, Irie F, Kotani M, Kawashima I, et al. Generation of a monoclonal antibody specific for a new class of minor ganglioside antigens, GQ1b alpha and GT1a alpha: its binding to dorsal and lateral horn of human thoracic cord. Brain Res. 1993;623:83–8. PubMed
Khan F, Proulx F, Lingwood CA. Detergentresistant globotriaosyl ceramide may devone verotoxin/glomeruli-restricted hemolytic uremic syndrome pathology. Kidney Int. 2009;75:1209–16. PubMed
Sharom FJ, Grant CW. Glycosphingolipids in membrane architecture. J Supramol Struct. 1977;6:249–58. PubMed
Sharom FJ, Grant CW. A model for ganglioside behaviour in cell membranes. Biochim Biophys Acta. 1978;507:280–93. PubMed