Rare and asymmetrical hybridization of the endemic Barbus carpathicus with its widespread congener Barbus barbus
Language English Country England, Great Britain Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
20735568
DOI
10.1111/j.1095-8649.2008.02098.x
PII: JFB2098
Knihovny.cz E-resources
- MeSH
- Alleles MeSH
- Chimera MeSH
- Cyprinidae genetics MeSH
- Genetic Variation MeSH
- Genotype MeSH
- Hybridization, Genetic * MeSH
- Isoenzymes analysis MeSH
- Microsatellite Repeats MeSH
- DNA, Mitochondrial genetics MeSH
- Multilocus Sequence Typing MeSH
- Genetics, Population * MeSH
- Rivers MeSH
- Sequence Analysis, DNA MeSH
- Linkage Disequilibrium MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Slovakia MeSH
- Names of Substances
- Isoenzymes MeSH
- DNA, Mitochondrial MeSH
In endemic species that co-occur with widespread congeners, hybridization can lead to an influx of novel and beneficial genetic variation, but high rates of introgression may cause genetic swamping of the endemic species and have detrimental effects on its survival potential. This study examines hybridization between sympatric populations of the Carpathian barbel Barbus carpathicus, a recently discovered cryptic species with a restricted range, and the widespread common barbel Barbus barbus. Based on six diagnostic allozyme loci, a microsatellite locus and mtDNA, hybrids were found to be present at multiple localities within the Vistula River drainage (Baltic Sea) as well as in the Tisza River system of the Danube River drainage (Black Sea). However, the numbers of hybrids were very low; four individuals of 230 fish sampled from the Vistula drainage. Bayesian assessment of their nuclear genotypes suggested that two hybrids in the Vistula drainage and nine in the Tisza system were F1 generation, and one in the Vistula drainage and one in the Tisza system were backcrosses (BC) to B. barbus, while no F2 or BC to B. carpathicus were detected. No hybrid carried B. carpathicus mtDNA and cytonuclear linkage disequilibria showed significant positive associations between hybrid genotypes and B. barbus mtDNA, suggesting unidirectionality in the interspecific mating with a disproportionate contribution of B. barbus mothers. Despite geographically broad occurrence of hybrids, these data provide evidence of strong constraints on hybridization in the native breeding habitats and the lack of introgression towards B. carpathicus.
References provided by Crossref.org