Proteome changes in platelets activated by arachidonic acid, collagen, and thrombin

. 2010 Nov 12 ; 8 () : 56. [epub] 20101112

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid21073729

BACKGROUND: Platelets are small anucleated blood particles that play a key role in the control of bleeding. Platelets need to be activated to perform their functions and participate in hemostasis. The process of activation is accompanied by vast protein reorganization and posttranslational modifications. The goal of this study was to identify changes in proteins in platelets activated by different agonists. Platelets were activated by three different agonists - arachidonic acid, collagen, and thrombin. 2D SDS-PAGE (pI 4-7) was used to separate platelet proteins. Proteomes of activated and resting platelets were compared with each other by Progenesis SameSpots statistical software; and proteins were identified by nanoLC-MS/MS. RESULTS: 190 spots were found to be significantly different. Of these, 180 spots were successfully identified and correspond to 144 different proteins. Five proteins were found that had not previously been identified in platelets: protein CDV3 homolog, protein ETHE1, protein LZIC, FGFR1 oncogene partner 2, and guanine nucleotide-binding protein subunit beta-5. Using spot expression profile analysis, we found two proteins (WD repeat-containing protein 1 and mitochondrial glycerol-3-phosphate dehydrogenase) that may be part of thrombin specific activation or signal transduction pathway(s). CONCLUSIONS: Our results, characterizing the differences within proteins in both activated (by various agonists) and resting platelets, can thus contribute to the basic knowledge of platelets and to the understanding of the function and development of new antiplatelet drugs.

Zobrazit více v PubMed

Ruggeri ZM. Platelets in atherothrombosis. Nat Med. 2002;8:1227–1234. doi: 10.1038/nm1102-1227. PubMed DOI

Fitzgerald DJ. Vascular biology of thrombosis: the role of platelet-vessel wall adhesion. Neurology. 2001;57:S1–4. PubMed

Senzel L, Gnatenko DV, Bahou WF. The platelet proteome. Curr Opin Hematol. 2009;16:329–333. doi: 10.1097/MOH.0b013e32832e9dc6. PubMed DOI PMC

Gnatenko DV, Perrotta PL, Bahou WF. Proteomic approaches to dissect platelet function: Half the story. Blood. 2006;108:3983–3991. doi: 10.1182/blood-2006-06-026518. PubMed DOI PMC

Maguire PB, Wynne KJ, Harney DF, O'Donoghue NM, Stephens G, Fitzgerald DJ. Identification of the phosphotyrosine proteome from thrombin activated platelets. Proteomics. 2002;2:642–648. doi: 10.1002/1615-9861(200206)2:6<642::AID-PROT642>3.0.CO;2-I. PubMed DOI

Lewandrowski U, Zahedi RP, Moebius J, Sickmann A. Functional proteome analysis of human platelets. Hamostaseologie. 2007;27:241–245. PubMed

García A, Senis YA, Antrobus R, Hughes CE, Dwek RA, Watson SP, Zitzmann N. A global proteomics approach identifies novel phosphorylated signaling proteins in GPVI-activated platelets: involvement of G6f, a novel platelet Grb2-binding membrane adapter. Proteomics. 2006;6:5332–5343. doi: 10.1002/pmic.200600299. PubMed DOI PMC

Piersma SR, Broxterman HJ, Kapci M, de Haas RR, Hoekman K, Verheul HM, Jiménez CR. Proteomics of the TRAP-induced platelet releasate. J Proteomics. 2009;72:91–109. doi: 10.1016/j.jprot.2008.10.009. PubMed DOI

Della Corte A, Maugeri N, Pampuch A, Cerletti C, de Gaetano G, Rotilio D. Application of 2-dimensional difference gel electrophoresis (2D-DIGE) to the study of thrombin-activated human platelet secretome. Platelets. 2008;19:43–50. doi: 10.1080/09537100701609035. PubMed DOI

Lewandrowski U, Wortelkamp S, Lohrig K, Zahedi RP, Wolters DA, Walter U, Sickmann A. Platelet membrane proteomics: a novel repository for functional research. Blood. 2009;114:e10–e19. doi: 10.1182/blood-2009-02-203828. PubMed DOI

Coppinger JA, O'Connor R, Wynne K, Flanagan M, Sullivan M, Maguire PB, Fitzgerald DJ, Cagney G. Moderation of the platelet releasate response by aspirin. Blood. 2007;109:4786–4792. doi: 10.1182/blood-2006-07-038539. PubMed DOI

Alexandru N, Constantin A, Popov D. Carbonylation of platelet proteins occurs as consequence of oxidative stress and thrombin activation, and is stimulated by ageing and type 2 diabetes. Clin Chem Lab Med. 2008;46:528–536. doi: 10.1515/CCLM.2008.104. PubMed DOI

Schulz C, Leuschen NV, Fröhlich T, Lorenz M, Pfeiler S, Gleissner CA, Kremmer E, Kessler M, Khandoga AG, Engelmann B, Ley K, Massberg S, Arnold GJ. Identification of novel downstream targets of platelet glycoprotein VI activation by differential proteome analysis: implications for thrombus formation. Blood. 2010;115:4102–4110. PubMed

Qureshi AH, Chaoji V, Maiguel D, Faridi MH, Barth CJ, Salem SM, Singhal M, Stoub D, Krastins B, Ogihara M, Zaki MJ, Gupta V. Proteomic and phospho-proteomic profile of human platelets in basal, resting state: insights into integrin signaling. PloS One. 2009;4:e7627. doi: 10.1371/journal.pone.0007627. PubMed DOI PMC

Gnatenko DV, Dunn JJ, McCorkle SR, Weissmann D, Perrotta PL, Bahou WF. Transcript profiling of human platelets using microarray and serial analysis of gene expression. Blood. 2003;101:2285–2293. doi: 10.1182/blood-2002-09-2797. PubMed DOI

Born GV. Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature. 1962;194:927–929. doi: 10.1038/194927b0. PubMed DOI

Amess B, Tolkovsky AM. Programmed cell death in sympathetic neurons: a study by two-dimensional polyacrylamide gel electrophoresis using computer image analysis. Electrophoresis. 1995;16:1255–1267. doi: 10.1002/elps.11501601207. PubMed DOI

Dittrich M, Birschmann I, Mietner S, Sickmann A, Walter U, Dandekar T. Platelet protein interactions: map, signaling components, and phosphorylation groundstate. Arterioscler Thromb Vasc Biol. 2008;28:1326–1331. doi: 10.1161/ATVBAHA.107.161000. PubMed DOI

Oh JJ, Grosshans DR, Wong SG, Slamon DJ. Identification of differentially expressed genes associated with HER-2/neu overexpression in human breast cancer cells. Nucleic Acids Res. 1999;27:4008–4017. doi: 10.1093/nar/27.20.4008. PubMed DOI PMC

Molina H, Horn DM, Tang N, Mathivanan S, Pandey A. Global proteomic profiling of phosphopeptides using electron transfer dissociation tandem mass spectrometry. Proc Natl Acad Sci USA. 2007;104:2199–2204. doi: 10.1073/pnas.0611217104. PubMed DOI PMC

Dephoure N, Zhou C, Villén J, Beausoleil SA, Bakalarski CE, Elledge SJ, Gygi SP. A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci USA. 2008;105:10762–10767. doi: 10.1073/pnas.0805139105. PubMed DOI PMC

Gauci S, Helbig AO, Slijper M, Krijgsveld J, Heck AJ, Mohammed S. Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach. Anal Chem. 2009;81:4493–4501. doi: 10.1021/ac9004309. PubMed DOI

Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science. 2009;325:834–840. doi: 10.1126/science.1175371. PubMed DOI

Higashitsuji H, Higashitsuji H, Nagao T, Nonoguchi K, Fujii S, Itoh K, Fujita J. A novel protein overexpressed in hepatoma accelerates export of NF-kappa B from the nucleus and inhibits p53-dependent apoptosis. Cancer Cell. 2002;2:335–346. doi: 10.1016/S1535-6108(02)00152-6. PubMed DOI

Tiranti V, D'Adamo P, Briem E, Ferrari G, Mineri R, Lamantea E, Mandel H, Balestri P, Garcia-Silva MT, Vollmer B, Rinaldo P, Hahn SH, Leonard J, Rahman S, Dionisi-Vici C, Garavaglia B, Gasparini P, Zeviani M. Ethylmalonic encephalopathy is caused by mutations in ETHE1, a gene encoding a mitochondrial matrix protein. Am J Hum Genet. 2004;74:239–252. doi: 10.1086/381653. PubMed DOI PMC

Katoh M. Molecular cloning and characterization of LZIC, a novel gene encoding ICAT homologous protein with leucine zipper domain. Int J Mol Med. 2001;8:611–615. PubMed

Clements WK, Kimelman D. LZIC regulates neuronal survival during zebrafish development. Dev Biol. 2005;283:322–334. doi: 10.1016/j.ydbio.2005.04.026. PubMed DOI

Lin A, Hokugo A, Choi J, Nishimura I. Small cytoskeleton-associated molecule, fibroblast growth factor receptor 1 oncogene partner 2/wound inducible transcript-3.0 (FGFR1OP2/wit3.0), facilitates fibroblast-driven wound closure. Am J Pathol. 2010;176:108–121. doi: 10.2353/ajpath.2010.090256. PubMed DOI PMC

Howlett AC, Gray AJ, Hunter JM, Willardson BM. Role of molecular chaperones in G protein beta5/regulator of G protein signaling dimer assembly and G protein betagamma dimer specificity. J Biol Chem. 2009;284:16386–16399. doi: 10.1074/jbc.M900800200. PubMed DOI PMC

Zimmerman GA, Weyrich AS. Signal-dependent protein synthesis by activated platelets: new pathways to altered phenotype and function. Arterioscler Thromb Vasc Biol. 2008;28:s17–s24. doi: 10.1161/ATVBAHA.107.160218. PubMed DOI PMC

Levy-Toledano S, Gallet C, Nadal F, Bryckaert M, Maclouf J, Rosa JP. Phosphorylation and dephosphorylation mechanisms in platelet function: a tightly regulated balance. Thromb Haemost. 1997;78:226–233. PubMed

Santos MT, Moscardó A, Vallés J, Martínez M, Pinón M, Aznar J, Broekman MJ, Marcus AJ. Participation of tyrosine phosphorylation in cytoskeletal reorganization, alpha(IIb)beta(3) integrin receptor activation, and aspirin-insensitive mechanisms of thrombin-stimulated human platelets. Circulation. 2000;102:1924–1930. PubMed

Perona G, Schiavon R, Guidi GC, Veneri D, Minuz P. Selenium dependent glutathione peroxidase: a physiological regulatory system for platelet function. Thromb Haemost. 1990;64:312–318. PubMed

Caccese D, Praticò D, Ghiselli A, Natoli S, Pignatelli P, Sanguigni V, Iuliano L, Violi F. Superoxide anion and hydroxyl radical release by collagen-induced platelet aggregation--role of arachidonic acid metabolism. Thromb Haemost. 2000;83:485–490. PubMed

Sobotková A, Másová-Chrastinová L, Suttnar J, Stikarová J, Májek P, Reicheltová Z, Kotlín R, Weisel JW, Malý M, Dyr JE. Antioxidants change platelet responses to various stimulating events. Free Radic Biol Med. 2009;47:1707–1714. doi: 10.1016/j.freeradbiomed.2009.09.015. PubMed DOI PMC

Wachowicz B, Olas B, Zbikowska HM, Buczyński A. Generation of reactive oxygen species in blood platelets. Platelets. 2002;13:175–182. doi: 10.1080/09533710022149395. PubMed DOI

Pignatelli P, Pulcinelli FM, Lenti L, Gazzaniga PP, Violi F. Hydrogen peroxide is involved in collagen-induced platelet activation. Blood. 1998;91:484–490. PubMed

Sobotková A, Pimková K, Májek P, Malý M, Suttnar J, Dyr JE. Analysis of carbonylated proteins in human blood platelets [abstract] Haematol-Hematol J. 2009;94(Suppl 2):317.

Greenberg CS, Miraglia CC, Rickles FR, Shuman MA. Cleavage of blood coagulation factor XIII and fibrinogen by thrombin during in vitro clotting. J Clin Invest. 1985;75:1463–1470. doi: 10.1172/JCI111849. PubMed DOI PMC

García A, Prabhakar S, Hughan S, Anderson TW, Brock CJ, Pearce AC, Dwek RA, Watson SP, Hebestreit HF, Zitzmann N. Differential proteome analysis of TRAP-activated platelets: involvement of DOK-2 and phosphorylation of RGS proteins. Blood. 2004;103:2088–2095. doi: 10.1182/blood-2003-07-2392. PubMed DOI

Tucker KL, Kaiser WJ, Bergeron AL, Hu H, Dong JF, Tan TH, Gibbins JM. Proteomic analysis of resting and thrombin-stimulated platelets reveals the translocation and functional relevance of HIP-55 in platelets. Proteomics. 2009;9:4340–4354. doi: 10.1002/pmic.200900024. PubMed DOI

Kaiser WJ, Holbrook LM, Tucker KL, Stanley RG, Gibbins JM. A functional proteomic method for the enrichment of peripheral membrane proteins reveals the collagen binding protein Hsp47 is exposed on the surface of activated human platelets. J Proteome Res. 2009;8:2903–2914. doi: 10.1021/pr900027j. PubMed DOI

Coppinger JA, Cagney G, Toomey S, Kislinger T, Belton O, McRedmond JP, Cahill DJ, Emili A, Fitzgerald DJ, Maguire PB. Characterization of the proteins released from activated platelets leads to localization of novel platelet proteins in human atherosclerotic lesions. Blood. 2004;103:2096–2104. doi: 10.1182/blood-2003-08-2804. PubMed DOI

Raab M, Daxecker H, Edwards RJ, Treumann A, Murphy D, Moran N. Protein interactions with the platelet integrin alpha(IIb) regulatory motif. Proteomics. 2010;10:2790–2800. doi: 10.1002/pmic.200900621. PubMed DOI

Marcus K, Moebius J, Meyer HE. Differential analysis of phosphorylated proteins in resting and thrombin-stimulated human platelets. Anal Bioanal Chem. 2003;376:973–993. doi: 10.1007/s00216-003-2021-z. PubMed DOI

Watabe S, Hasegawa H, Takimoto K, Yamamoto Y, Takahashi SY. Possible function of SP-22, a substrate of mitochondrial ATP-dependent protease, as a radical scavenger. Biochem Biophys Res Commun. 1995;213:1010–1016. doi: 10.1006/bbrc.1995.2229. PubMed DOI

García A, Prabhakar S, Brock CJ, Pearce AC, Dwek RA, Watson SP, Hebestreit HF, Zitzmann N. Extensive analysis of the human platelet proteome by two-dimensional gel electrophoresis and mass spectrometry. Proteomics. 2004;4:656–668. doi: 10.1002/pmic.200300665. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Proteome changes of plasma-derived extracellular vesicles in patients with myelodysplastic syndrome

. 2022 ; 17 (1) : e0262484. [epub] 20220110

Plasma Protein Biomarker Candidates for Myelodysplastic Syndrome Subgroups

. 2015 ; 2015 () : 209745. [epub] 20150913

Peripheral blood mononuclear cell proteome changes in patients with myelodysplastic syndrome

. 2015 ; 2015 () : 872983. [epub] 20150416

Proteome changes in the plasma of myelodysplastic syndrome patients with refractory anemia with excess blasts subtype 2

. 2014 ; 2014 () : 178709. [epub] 20140525

Improved coomassie blue dye-based fast staining protocol for proteins separated by SDS-PAGE

. 2013 ; 8 (11) : e81696. [epub] 20131121

Plasma proteome changes associated with refractory anemia and refractory anemia with ringed sideroblasts in patients with myelodysplastic syndrome

. 2013 Apr 08 ; 11 (1) : 14. [epub] 20130408

Plasma protein alterations in the refractory anemia with excess blasts subtype 1 subgroup of myelodysplastic syndrome

. 2012 May 08 ; 10 (1) : 31. [epub] 20120508

Plasma proteome changes associated with refractory cytopenia with multilineage dysplasia

. 2011 Oct 05 ; 9 () : 64. [epub] 20111005

Plasma proteome changes in cardiovascular disease patients: novel isoforms of apolipoprotein A1

. 2011 Jun 01 ; 9 () : 84. [epub] 20110601

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...