Peripheral blood mononuclear cell proteome changes in patients with myelodysplastic syndrome

. 2015 ; 2015 () : 872983. [epub] 20150416

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu klinické zkoušky, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25969835

Our aim was to search for proteome changes in peripheral blood mononuclear cells (PBMCs) of MDS patients with refractory cytopenia with multilineage dysplasia. PBMCs were isolated from a total of 12 blood samples using a Histopaque-1077 solution. The proteins were fractioned, separated by 2D SDS-PAGE (pI 4-7), and double-stained. The proteomes were compared and statistically processed with Progenesis SameSpots; then proteins were identified by nano-LC-MS/MS. Protein functional association and expression profiles were analyzed using the EnrichNet application and Progenesis SameSpots hierarchical clustering software, respectively. By comparing the cytosolic, membrane, and nuclear fractions of the two groups, 178 significantly (P < 0.05, ANOVA) differing spots were found, corresponding to 139 unique proteins. Data mining of the Reactome and KEGG databases using EnrichNet highlighted the possible involvement of the identified protein alterations in apoptosis, proteasome protein degradation, heat shock protein action, and signal transduction. Western blot analysis revealed underexpression of vinculin and advanced fragmentation of fermitin-3 in MDS patients. To the best of our knowledge, this is the first time that proteome changes have been identified in the mononuclear cells of MDS patients. Vinculin and fermitin-3, the proteins involved in cell adhesion and integrin signaling, have been shown to be dysregulated in MDS.

Zobrazit více v PubMed

Schecter J., Galili N., Raza A. MDS: refining existing therapy through improved biologic insights. Blood Reviews. 2012;26(2):73–80. doi: 10.1016/j.blre.2011.11.001. PubMed DOI

Neuwirtová R. Myelodysplastický syndrom: onkohematologické onemocnění vyššího věku. Česká Geriatrická Revue. 2005;3(2):21–28.

Vardiman J. W., Thiele J., Arber D. A., et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114(5):937–951. doi: 10.1182/blood-2009-03-209262. PubMed DOI

Májek P., Riedelová-Reicheltová Z., Suttnar J., Pečánková K., Čermák J., Dyr J. E. Plasma proteome changes associated with refractory anemia and refractory anemia with ringed sideroblasts in patients with myelodysplastic syndrome. Proteome Science. 2013;11(1, article 14) doi: 10.1186/1477-5956-11-14. PubMed DOI PMC

Májek P., Reicheltová Z., Suttnar J., Čermák J., Dyr J. E. Plasma proteome changes associated with refractory cytopenia with multilineage dysplasia. Proteome Science. 2011;9, article 64 doi: 10.1186/1477-5956-9-64. PubMed DOI PMC

Májek P., Reicheltová Z., Suttnar J., Čermák J., Dyr J. E. Plasma protein alterations in the refractory anemia with excess blasts subtype 1 subgroup of myelodysplastic syndrome. Proteome Science. 2012;10(1, article 31) doi: 10.1186/1477-5956-10-31. PubMed DOI PMC

Májek P., Riedelová-Reicheltová Z., Suttnar J., Pecankova K., Čermák J., Dyr J. E. Proteome changes in the plasma of myelodysplastic syndrome patients with refractory anemia with excess blasts subtype 2. Disease Markers. 2014;2014:8. doi: 10.1155/2014/178709.178709 PubMed DOI PMC

Aivado M., Spentzos D., Germing U., et al. Serum proteome profiling detects myelodysplastic syndromes and identifies CXC chemokine ligands 4 and 7 as markers for advanced disease. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(4):1307–1312. doi: 10.1073/pnas.0610330104. PubMed DOI PMC

Chen C., Bowen D. T., Giagounidis A. A. N., Schlegelberger B., Haase S., Wright E. G. Identification of disease- and therapy-associated proteome changes in the sera of patients with myelodysplastic syndromes and del(5q) Leukemia. 2010;24(11):1875–1884. doi: 10.1038/leu.2010.182. PubMed DOI

Fröbel J., Cadeddu R.-P., Hartwig S., et al. Platelet proteome analysis reveals integrin-dependent aggregation defects in patients with myelodysplastic syndromes. Molecular & Cellular Proteomics. 2013;12(5):1272–1280. doi: 10.1074/mcp.m112.023168. PubMed DOI PMC

Kazama H., Teramura M., Kurihara S., Yoshinaga K., Kato T., Motoji T. Peroxiredoxin 2 expression is increased in neutrophils of patients with refractory cytopenia with multilineage dysplasia. British Journal of Haematology. 2014;166(5):720–728. PubMed

Greenberg P. L., editor. Myelodysplastic Syndromes: Clinical and Biological Advances. Cambridge, UK: Cambridge University Press; 2006.

Walter M. J., Shen D., Shao J., et al. Clonal diversity of recurrently mutated genes in myelodysplastic syndromes. Leukemia. 2013;27(6):1275–1282. doi: 10.1038/leu.2013.58. PubMed DOI PMC

Bains A., Luthra R., Medeiros L. J., Zuo Z. FLT3 and NPM1 mutations in myelodysplastic syndromes: frequency and potential value for predicting progression to acute myeloid leukemia. The American Journal of Clinical Pathology. 2011;135(1):62–69. doi: 10.1309/ajcpei9xu8pybcio. PubMed DOI

Chen C.-Y., Lin L.-I., Tang J.-L., et al. RUNX1 gene mutation in primary myelodysplastic syndrome—the mutation can be detected early at diagnosis or acquired during disease progression and is associated with poor outcome. British Journal of Haematology. 2007;139(3):405–414. doi: 10.1111/j.1365-2141.2007.06811.x. PubMed DOI

Issa J.-P. Epigenetic changes in the myelodysplastic syndrome. Hematology/Oncology Clinics of North America. 2010;24(2):317–330. doi: 10.1016/j.hoc.2010.02.007. PubMed DOI PMC

Sugimori C., List A. F., Epling-Burnette P. K. Immune dysregulation in myelodysplastic syndrome. Hematology Reports. 2010;2(1, article e1) doi: 10.4081/hr.2010.e1. PubMed DOI PMC

Vergara D., Chiriacò F., Acierno R., Maffia M. Proteomic map of peripheral blood mononuclear cells. Proteomics. 2008;8(10):2045–2051. doi: 10.1002/pmic.200700726. PubMed DOI

Maccarrone G., Rewerts C., Lebar M., Turck C. W., Martins-de-Souza D. Proteome profiling of peripheral mononuclear cells from human blood. Proteomics. 2013;13(5):893–897. doi: 10.1002/pmic.201200377. PubMed DOI

Maes E., Landuyt B., Mertens I., Schoofs L. Interindividual variation in the proteome of human peripheral blood mononuclear cells. PLoS ONE. 2013;8(4) doi: 10.1371/journal.pone.0061933.e61933 PubMed DOI PMC

Vardiman J. W., Harris N. L., Brunning R. D. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood. 2002;100(7):2292–2302. doi: 10.1182/blood-2002-04-1199. PubMed DOI

Májek P., Reicheltová Z., Štikarová J., Suttnar J., Sobotková A., Dyr J. E. Proteome changes in platelets activated by arachidonic acid, collagen, and thrombin. Proteome Science. 2010;8, article 56 doi: 10.1186/1477-5956-8-56. PubMed DOI PMC

Májek P., Riedelová-Reicheltová Z., Pecánková K., Dyr J. E. Improved coomassie blue dye-based fast staining protocol for proteins separated by SDS-PAGE. PLoS ONE. 2013;8(11) doi: 10.1371/journal.pone.0081696.e81696 PubMed DOI PMC

Glaab E., Baudot A., Krasnogor N., Schneider R., Valencia A. EnrichNet: network-based gene set enrichment analysis. Bioinformatics. 2012;28(18):i451–i457. doi: 10.1093/bioinformatics/bts389. PubMed DOI PMC

Kanehisa M., Goto S., Sato Y., Kawashima M., Furumichi M., Tanabe M. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Research. 2014;42(1):D199–D205. doi: 10.1093/nar/gkt1076. PubMed DOI PMC

Kanehisa M., Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Research. 2000;28(1):27–30. doi: 10.1093/nar/28.1.27. PubMed DOI PMC

Croft D., Mundo A. F., Haw R., et al. The reactome pathway knowledgebase. Nucleic Acids Research. 2014;42(1):D472–D477. doi: 10.1093/nar/gkt1102. PubMed DOI PMC

Milacic M. M., Haw R., Rothfels K., et al. Annotating cancer variants and anti-cancer therapeutics in reactome. Cancers. 2012;4(4):1180–1211. doi: 10.3390/cancers4041180. PubMed DOI PMC

Sullivan K. E., Cutilli J., Piliero L. M., et al. Measurement of cytokine secretion, intracellular protein expression, and mRNA in resting and stimulated peripheral blood mononuclear cells. Clinical and Diagnostic Laboratory Immunology. 2000;7(6):920–924. doi: 10.1128/cdli.7.6.920-924.2000. PubMed DOI PMC

Haider D. G., Leuchten N., Schaller G., et al. C-reactive protein is expressed and secreted by peripheral blood mononuclear cells. Clinical and Experimental Immunology. 2006;146(3):533–539. doi: 10.1111/j.1365-2249.2006.03224.x. PubMed DOI PMC

Browne K. A., Johnstone R. W., Jans D. A., Trapani J. A. Filamin (280-kDa actin-binding protein) is a caspase substrate and is also cleaved directly by the cytotoxic T lymphocyte protease granzyme B during apoptosis. The Journal of Biological Chemistry. 2000;275(50):39262–39266. doi: 10.1074/jbc.c000622200. PubMed DOI

Bennett J. Understanding Myelodysplastic Syndromes: A Patient Handbook. 6th. Crosswicks, NJ, USA: The Myelodysplastic Syndromes Foundation; 2008.

Coghlin C., Carpenter B., Dundas S. R., Lawrie L. C., Telfer C., Murray G. I. Characterization and over-expression of chaperonin t-complex proteins in colorectal cancer. The Journal of Pathology. 2006;210(3):351–357. doi: 10.1002/path.2056. PubMed DOI

Yaffe M. B., Farr G. W., Miklos D., Horwich A. L., Sternlicht M. L., Sternlicht H. TCP1 complex is a molecular chaperone in tubulin biogenesis. Nature. 1992;358(6383):245–248. doi: 10.1038/358245a0. PubMed DOI

Goetz S. C., Anderson K. V. The primary cilium: a signalling centre during vertebrate development. Nature Reviews Genetics. 2010;11(5):331–344. doi: 10.1038/nrg2774. PubMed DOI PMC

Finetti F., Paccani S. R., Riparbelli M. G., et al. Intraflagellar transport is required for polarized recycling of the TCR/ CD3 complex to the immune synapse. Nature Cell Biology. 2009;11(11):1332–1339. doi: 10.1038/ncb1977. PubMed DOI PMC

Alieva I. B., Vorobjev I. A. Vertebrate primary cilia: a sensory part of centrosomal complex in tissue cells, but a ‘sleeping beauty’ in cultured cells? Cell Biology International. 2004;28(2):139–150. doi: 10.1016/j.cellbi.2003.11.013. PubMed DOI

Plotnikova O. V., Golemis E. A., Pugacheva E. N. Cell cycle-dependent ciliogenesis and cancer. Cancer Research. 2008;68(7):2058–2061. doi: 10.1158/0008-5472.CAN-07-5838. PubMed DOI PMC

Seeley E. S., Nachury M. V. The perennial organelle: assembly and disassembly of the primary cilium. Journal of Cell Science. 2010;123(4):511–518. doi: 10.1242/jcs.061093. PubMed DOI PMC

Seo S., Baye L. M., Schulz N. P., et al. BBS6, BBS10, and BBS12 form a complex with CCT/TRiC family chaperonins and mediate BBSome assembly. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(4):1488–1493. doi: 10.1073/pnas.0910268107. PubMed DOI PMC

Grimm L. M., Osborne B. A. The role of the proteasome in apoptosis. In: Hilt W., Wolf D. M., editors. Proteasomes: The World of Regulatory Proteolysis. Georgetown, Tex, USA: Landes Bioscience; 2000. pp. 315–331.

Wójcik C. Regulation of apoptosis by the ubiquitin and proteasome pathway. Journal of Cellular and Molecular Medicine. 2002;6(1):25–48. doi: 10.1111/j.1582-4934.2002.tb00309.x. PubMed DOI PMC

Braun T., Carvalho G., Coquelle A., et al. NF-κB constitutes a potential therapeutic target in high-risk myelodysplastic syndrome. Blood. 2006;107(3):1156–1165. doi: 10.1182/blood-2005-05-1989. PubMed DOI

Dawson S. P., Arnold J. E., Mayer N. J., et al. Developmental changes of the 26 S proteasome in abdominal intersegmental muscles of Manduca sexta during programmed cell death. The Journal of Biological Chemistry. 1995;270(4):1850–1858. doi: 10.1074/jbc.270.4.1850. PubMed DOI

Takayanagi K., Dawson S., Reynolds S. E., Mayer R. J. Specific developmental changes in the regulatory subunits of the 26 S proteasome in intersegmental muscles preceding eclosion in Manduca sexta . Biochemical and Biophysical Research Communications. 1996;228(2):517–523. doi: 10.1006/bbrc.1996.1692. PubMed DOI

DeMartino G. N., Gillette T. G. Proteasomes: machines for all reasons. Cell. 2007;129(4):659–662. doi: 10.1016/j.cell.2007.05.007. PubMed DOI

Flandrin-Gresta P., Solly F., Aanei C. M., et al. Heat shock protein 90 is overexpressed in high-risk myelodysplastic syndromes and associated with higher expression and activation of focal adhesion kinase. Oncotarget. 2012;3(10):1158–1168. PubMed PMC

Creagh E. M., Sheehan D., Cotter T. G. Heat shock proteins—modulators of apoptosis in tumour cells. Leukemia. 2000;14(7):1161–1173. doi: 10.1038/sj.leu.2401841. PubMed DOI

Sherman M. Y., Goldberg A. L. Cellular defenses against unfolded proteins: a cell biologist thinks about neurodegenerative diseases. Neuron. 2001;29(1):15–32. doi: 10.1016/s0896-6273(01)00177-5. PubMed DOI

Kopito R. R. Aggresomes, inclusion bodies and protein aggregation. Trends in Cell Biology. 2000;10(12):524–530. doi: 10.1016/S0962-8924(00)01852-3. PubMed DOI

Lanneau D., Brunet M., Frisan E., Solary E., Fontenay M., Garrido C. Heat shock proteins: essential proteins for apoptosis regulation. Journal of Cellular and Molecular Medicine. 2008;12(3):743–761. doi: 10.1111/j.1582-4934.2008.00273.x. PubMed DOI PMC

Stankiewicz A. R., Lachapelle G., Foo C. P., Radicioni S. M., Mosser D. D. Hsp70 inhibits heat-induced apoptosis upstream of mitochondria by preventing Bax translocation. The Journal of Biological Chemistry. 2005;280(46):38729–38739. doi: 10.1074/jbc.m509497200. PubMed DOI

Beere H. M., Wolf B. B., Cain K., et al. Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nature Cell Biology. 2000;2(8):469–475. doi: 10.1038/35019501. PubMed DOI

Takayama S., Reed J. C., Homma S. Heat-shock proteins as regulators of apoptosis. Oncogene. 2003;22(56):9041–9047. doi: 10.1038/sj.onc.1207114. PubMed DOI

Kamada M., So A., Muramaki M., Rocchi P., Beraldi E., Gleave M. Hsp27 knockdown using nucleotide-based therapies inhibit tumor growth and enhance chemotherapy in human bladder cancer cells. Molecular Cancer Therapeutics. 2007;6(1):299–308. doi: 10.1158/1535-7163.mct-06-0417. PubMed DOI

Kim W. K., Cho H. J., Ryu S. I., et al. Comparative proteomic analysis of peripheral blood mononuclear cells from atopic dermatitis patients and healthy donors. Biochemistry and Molecular Biology Reports. 2008;41(8):597–607. PubMed

Xue Z. H., Feng C., Liu W. L., Tan S. M. A role of kindlin-3 in integrin αMβ2 outside-in signaling and the Syk-Vav1-Rac1/Cdc42 signaling axis. PLoS ONE. 2013;8e56911 PubMed PMC

Critchley D. R. Cytoskeletal proteins talin and vinculin in integrin-mediated adhesion. Biochemical Society Transactions. 2004;32, part 5:831–836. PubMed

Nardo G., Pozzi S., Mantovani S., et al. Nitroproteomics of peripheral blood mononuclear cells from patients and a rat model of ALS. Antioxidants and Redox Signaling. 2009;11(7):1559–1567. PubMed

Schneider C. A., Rasband W. S., Eliceiri K. W. NIH Image to ImageJ: 25 years of image analysis. Nature Methods. 2012;9(7):671–675. PubMed PMC

Ussar S., Wang H. V., Linder S., Fässler R., Moser M. The Kindlins: subcellular localization and expression during murine development. Experimental Cell Research. 2006;312:3142–3151. PubMed

Moser M., Bauer M., Schmid S., et al. Kindlin-3 is required for β2 integrin-mediated leukocyte adhesion to endothelial cells. Nature Medicine. 2009;15:300–305. PubMed

Morrison V. L., MacPherson M., Savinko T., Lek H. S., Prscott A., Fagerholm S. C. The β2 integrin-kindlin-3 interaction is essential for T-cell homing but dispensable for T-cell activation in vivo. Blood. 2013;122(8):1428–1436. PubMed PMC

Linder S., Kopp P. Podosomes at a glance. Journal of Cell Science. 2005;118(10):2079–2082. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...