Oxidation of carcinogenic 2-nitroanisole by rat cytochromes P450 - similarity between human and rat enzymes
Status PubMed-not-MEDLINE Jazyk angličtina Země Slovensko Médium print
Typ dokumentu časopisecké články
PubMed
21218109
PubMed Central
PMC2993485
DOI
10.2478/v10102-010-0035-x
Knihovny.cz E-zdroje
- Klíčová slova
- 2-nitroanisole, 2-nitrophenol, cytochrome P450, detoxication, metabolism, oxidation,
- Publikační typ
- časopisecké články MeSH
2-Nitroanisole (2-NA) is an important industrial pollutant and a potent carcinogen for rodents. Understanding which cytochrome P450 (CYP) enzymes are involved in its metabolism are important to assess an individual's susceptibility to this environmental carcinogen. The aim of this study was to evaluate the efficiency of rat hepatic CYPs to oxidize 2-NA, to examine the metabolites formed during such an oxidation, and to compare such efficiencies of rat CYPs with those of human. 2-NA is oxidized by rat hepatic microsomes to 2-nitrophenol (2-NP) as the major metabolite, and to 2,6-dihydroxynitrobenzene (2,6-DNB) and 2,5-dihydroxynitrobenzene (2,5-DNB) as the minor products. All these metabolites are suggested as detoxication products. Using hepatic microsomes of rats pre-treated with specific CYP inducers and microsomes from Baculovirus transfected insect cells expressing recombinant rat and human CYP enzymes we found that rat recombinant CYP2E1, 2D2, 2B2, 2C6 and 1A1, as well as orthologous human CYP enzymes are the most efficient enzymes metabolizing 2-NA. However, human CYP1A1 oxidize 2-NA with a higher efficiency than the enzyme of rats. The results show the participation of orthologous CYPs in 2-NA oxidation by both species and underline the suitability of rat species as a model to evaluate human susceptibility to 2-NA.
Zobrazit více v PubMed
Dračínská H, Mikšanová M, Svobodová M, Smrček S, Frei E, Schmeiser HH, Stiborová M. Oxidative detoxication of carcinogenic 2-nitroanisole by human, rat and rabbit cytochrome P450. Neuro Endocrinol Lett. 2006;27:9–13. PubMed
Garner RC, Martin CN, Clayson DB. Carcinogenic aromatic amines and related compounds. Chemical Carcinogens. In: Searle C, editor. ACS Monograph 182. 2nd ed. Vol. 1. Washington, DC: American Chemical Society; 1984. pp. 175–302.
IARC. Diesel Exhaust and Some Nitroarenes. Vol. 46. Lyon: IARC; 1989. Diesel and gasoline engine exhausts and some nitroarenes. Monograph on the Evaluation of the carcinogenic risk to humans. PubMed PMC
Mikšanová M, Novák P, Frei E, Stiborová M. Metabolism of carcinogenic 2-nitroanisole by rat, rabbit, porcine and human hepatic cytosol. Collect Czech Chem Commun. 2004a;69:589–602.
Mikšanová M, Šulc M, Rýdlová H, Schmeiser HH, Frei E, Stiborová M. Enzymes involved in the metabolism of the carcinogen 2-nitroanisole: evidence for its oxidative detoxication by human cytochromes P450. Chem Res Toxicol. 2004b;17:663–71. PubMed
NTP. NTP Technical Report 89. Bethesda, MD: National Institute of Health, US Department of Health and Human Services; 1978. Bioassay of o-anisidine hydrochloride for possible carcinogenicity.
NTP. NTP Technical Report 416. Bethesda, MD: National Institute of Health, US Department of Health and Human Services; 1993. Toxicology and Carcinogenesis. Studies of 2-nitroanisole.
Purohit V, Basu A. Mutagenicity of nitroaromatic compounds. Chem Res Toxicol. 2000;13:673–692. PubMed
Stiborová M, Martínek V, Rýdlová H, Hodek P, Frei E. Sudan I is a potential carcinogen for humans: evidence for its metabolic activation and detoxication by human recombinant cytochrome P450 1A1 and liver microsomes. Cancer Res. 2002;62:5678–5684. PubMed
Stiborová M, Martínek V, Schmeiser HH, Frei E. Modulation of CYP1A1-mediated oxidation of carcinogenic azo dye Sudan I and its binding to DNA by cytochrome b5 . Neuro Endocrinol Let. 2006;27(2):35–39. PubMed
Stiborová M, Mikšanová M, Smrček S, Bieler CA, Breuer A, Klokow KA, Schmeiser HH, Frei E. Identification of a genotoxic mechanism for 2-nitroanisole carcinogenicity and of its carcinogenic potential for humans. Carcinogenesis. 2004;25:833–40. PubMed
Stiborová M, Schmeiser HH, Frei E. To the mechanism of 2-nitroanisole carcinogenicity: in vitro metabolism of 2-nitroanisole mediated by peroxidases and xanthine oxidase. Collect Czech Chem Commun. 1998;63:857–869.