Transferable scoring function based on semiempirical quantum mechanical PM6-DH2 method: CDK2 with 15 structurally diverse inhibitors
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- cyklin-dependentní kinasa 2 antagonisté a inhibitory metabolismus MeSH
- inhibitory proteinkinas chemie farmakologie MeSH
- kvantová teorie MeSH
- lidé MeSH
- ligandy MeSH
- molekulární modely MeSH
- racionální návrh léčiv * MeSH
- termodynamika MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- CDK2 protein, human MeSH Prohlížeč
- cyklin-dependentní kinasa 2 MeSH
- inhibitory proteinkinas MeSH
- ligandy MeSH
A semiempirical quantum mechanical PM6-DH2 method accurately covering the dispersion interaction and H-bonding was used to score fifteen structurally diverse CDK2 inhibitors. The geometries of all the complexes were taken from the X-ray structures and were reoptimised by the PM6-DH2 method in continuum water. The total scoring function was constructed as an estimate of the binding free energy, i.e., as a sum of the interaction enthalpy, interaction entropy and the corrections for the inhibitor desolvation and deformation energies. The applied scoring function contains a clear thermodynamical terms and does not involve any adjustable empirical parameter. The best correlations with the experimental inhibition constants (ln K (i)) were found for bare interaction enthalpy (r (2) = 0.87) and interaction enthalpy corrected for ligand desolvation and deformation energies (r (2) = 0.77); when the entropic term was considered, however, the correlation becomes worse but still acceptable (r (2) = 0.52). The resulting correlation based on the PM6-DH2 scoring function is better than previously published function based on various docking/scoring, SAR studies or advanced QM/MM approach, however, the robustness is limited by number of available experimental data used in the correlation. Since a very similar correlation between the experimental and theoretical results was found also for a different system of the HIV-1 protease, the suggested scoring function based on the PM6-DH2 method seems to be applicable in drug design, even if diverse protein-ligand complexes have to be ranked.
Zobrazit více v PubMed
Proc Natl Acad Sci U S A. 2007 Jan 30;104(5):1534-9 PubMed
J Med Chem. 2000 Nov 2;43(22):4098-108 PubMed
Proteins. 1995 Aug;22(4):378-91 PubMed
Proteins. 2002 Jun 1;47(4):409-43 PubMed
Biochim Biophys Acta. 2010 Mar;1804(3):511-9 PubMed
J Chem Inf Model. 2009 Apr;49(4):886-99 PubMed
J Mol Model. 2009 Jul;15(7):765-805 PubMed
J Biomol Struct Dyn. 2002 Oct;20(2):141-54 PubMed
Science. 2002 Dec 6;298(5600):1912-34 PubMed
J Comput Chem. 2005 Dec;26(16):1668-88 PubMed
J Comput Chem. 2004 Jul 15;25(9):1157-74 PubMed
Curr Opin Drug Discov Devel. 2006 May;9(3):370-9 PubMed
Nat Rev Cancer. 2009 Mar;9(3):153-66 PubMed
J Chem Inf Model. 2006 Nov-Dec;46(6):2552-62 PubMed
Drug Discov Today. 2007 Sep;12(17-18):725-31 PubMed
Structure. 2003 Apr;11(4):399-410 PubMed
J Chem Theory Comput. 2006 Sep;2(5):1255-73 PubMed
Curr Opin Chem Biol. 1999 Aug;3(4):459-65 PubMed
J Comput Chem. 2004 Oct;25(13):1605-12 PubMed
Eur J Biochem. 1994 Sep 1;224(2):771-86 PubMed
J Med Chem. 2000 Jul 27;43(15):2797-804 PubMed
Cell. 2004 Jan 23;116(2):221-34 PubMed
J Phys Chem B. 2010 Oct 7;114(39):12666-78 PubMed
J Am Chem Soc. 2004 Feb 4;126(4):1020-1 PubMed
J Biol Chem. 2002 Nov 29;277(48):46609-15 PubMed
Q Rev Biophys. 2009 Feb;42(1):1-40 PubMed
J Med Chem. 2004 Mar 25;47(7):1662-75 PubMed
Chem Rev. 2010 Sep 8;110(9):5023-63 PubMed
Curr Med Chem. 2000 Dec;7(12):1213-45 PubMed
J Med Chem. 2000 Jun 29;43(13):2506-13 PubMed
J Med Chem. 2006 Aug 24;49(17):5141-53 PubMed
Biophys J. 2006 Oct 15;91(8):2798-814 PubMed
J Chem Inf Model. 2009 Jul;49(7):1797-809 PubMed
ChemMedChem. 2010 Jul 5;5(7):1007-14 PubMed
Trends Pharmacol Sci. 2002 Sep;23(9):417-25 PubMed
Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):2735-40 PubMed
J Comput Chem. 2007 Jan 30;28(2):555-69 PubMed
J Phys Chem B. 2009 Feb 26;113(8):2234-46 PubMed
Med Chem. 2008 Jul;4(4):313-21 PubMed
Nat Struct Biol. 1997 Oct;4(10):796-801 PubMed
Acc Chem Res. 2003 Jun;36(6):417-25 PubMed
Biochim Biophys Acta. 2010 Jul;1803(7):858-64 PubMed
Chemistry. 2006 May 24;12(16):4297-304 PubMed
J Med Chem. 2006 Oct 5;49(20):5851-5 PubMed
Chem Rev. 2006 Sep;106(9):3497-519 PubMed
J Med Chem. 2010 Mar 11;53(5):2136-45 PubMed
Eur J Med Chem. 2010 Mar;45(3):1158-66 PubMed
J Chem Inf Model. 2007 Jul-Aug;47(4):1526-35 PubMed
J Mol Model. 2007 Dec;13(12):1173-213 PubMed
J Chem Theory Comput. 2010 Sep 1;6(10):3079-3091 PubMed
J Chem Theory Comput. 2010;6(4):1018-1027 PubMed
Nat Struct Biol. 2002 Oct;9(10):745-9 PubMed
J Chem Theory Comput. 2009 Jul 14;5(7):1749-60 PubMed
J Chem Inf Model. 2008 Mar;48(3):659-68 PubMed
J Med Chem. 2005 Aug 25;48(17):5437-47 PubMed
Dev Cell. 2008 Feb;14(2):159-69 PubMed
J Chem Inf Model. 2006 Jan-Feb;46(1):254-63 PubMed
J Chem Inf Model. 2008 May;48(5):958-70 PubMed
J Med Chem. 2008 Jul 24;51(14):4280-8 PubMed
J Med Chem. 2006 Nov 2;49(22):6549-60 PubMed
J Phys Chem B. 2009 May 7;113(18):6378-96 PubMed
Annu Rev Cell Dev Biol. 1997;13:261-91 PubMed
Curr Top Med Chem. 2010;10(1):33-45 PubMed
Eur J Biochem. 1997 Jan 15;243(1-2):518-26 PubMed
J Biol Chem. 2006 Mar 17;281(11):7271-81 PubMed
J Chem Theory Comput. 2010 Jan 12;6(1):344-52 PubMed
J Med Chem. 2009 May 14;52(9):2854-62 PubMed
Cancer Cell. 2003 Mar;3(3):233-45 PubMed
J Med Chem. 2005 Jul 14;48(14):4558-75 PubMed
Phys Chem Chem Phys. 2010 Sep 21;12(35):10476-93 PubMed
Annu Rev Biophys Biomol Struct. 2003;32:335-73 PubMed
Chem Rev. 2005 Aug;105(8):2999-3093 PubMed
Bioorg Med Chem Lett. 2003 Sep 15;13(18):3079-82 PubMed
J Comput Chem. 2003 Dec;24(16):1999-2012 PubMed
Curr Top Med Chem. 2010;10(1):46-54 PubMed
Trends Biochem Sci. 2005 Nov;30(11):630-41 PubMed
J Chem Theory Comput. 2007;3(4):1609-1619 PubMed