Structure of the has operon promoter and the effect of mutations on the has promoter strength in Streptococcus equi subsp. zooepidemicus
Jazyk angličtina Země Švýcarsko Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- bakteriální geny genetika MeSH
- bakteriální proteiny MeSH
- glukuronidasa MeSH
- klonování DNA MeSH
- molekulární sekvence - údaje MeSH
- mutace genetika MeSH
- mutageneze MeSH
- operon MeSH
- plazmidy MeSH
- promotorové oblasti (genetika) genetika MeSH
- sekvence nukleotidů MeSH
- sekvenční seřazení MeSH
- Streptococcus equi genetika MeSH
- Streptococcus pyogenes genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- glukuronidasa MeSH
The purpose of this study is to determine the effect of the corresponding nucleotides from Streptococcus pyogenes on the has promoter strength in highly encapsulated strain S. equi subsp. zooepidemicus (SEZ) and detect an empowering mutations in SEZ. Eight different strains of SEZ carrying nucleotide mutations in the -73 to -38 region upstream of the has promoter were constructed. The significant activity decrease to 36-1% was observed after the introduction of mutations in the promoter region from -44 to -38 site. The exception was observed in mutation in -49 site when no significant decrease was observed. When nucleotides TTT were used in positions -73 the promoter became weaker, whereas no significant effect was observed after using nucleotides CCC (96%). Unfortunately, introduction of these mutations into chromosome SEZ has no empowering effect. Six strains, which carried nucleotide sequences of different lengths upstream from the transcription start of hasA promoter, were constructed to determine the minimum upstream region required for the maximum transcription efficiency of the has operon. No change of the activity of the has promoter constructs containing as few as 101 nucleotides upstream from the transcription start point was observed.
Zobrazit více v PubMed
FASEB J. 1992 Apr;6(7):2397-404 PubMed
Infect Immun. 1996 Feb;64(2):503-10 PubMed
Infect Immun. 1997 Apr;65(4):1422-30 PubMed
Lancet. 1994 Oct 22;344(8930):1111-5 PubMed
JAMA. 1993 Jan 20;269(3):384-9 PubMed
Mol Microbiol. 1990 Jul;4(7):1143-52 PubMed
J Biosci Bioeng. 2005 Jun;99(6):521-8 PubMed
Nucleic Acids Res. 1983 Apr 25;11(8):2237-55 PubMed
Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12238-42 PubMed
J Biol Chem. 1993 Apr 5;268(10):7118-24 PubMed
Infect Immun. 1997 Jan;65(1):64-71 PubMed
J Biol Chem. 1987 Oct 5;262(28):13654-61 PubMed
Infect Immun. 1994 Feb;62(2):433-41 PubMed
J Biol Chem. 1994 Jan 7;269(1):169-75 PubMed
J Biol Chem. 1995 Aug 4;270(31):18452-8 PubMed
Anal Biochem. 1976 May 7;72:248-54 PubMed
Clin Infect Dis. 1995 Nov;21(5):1220-7 PubMed
Appl Microbiol Biotechnol. 2005 Jan;66(4):341-51 PubMed
Appl Microbiol Biotechnol. 2007 Apr;74(5):1016-22 PubMed
EMBO J. 1990 Jul;9(7):2215-20 PubMed
J Biol Chem. 1993 Sep 15;268(26):19181-4 PubMed
J Bacteriol. 1995 Nov;177(22):6619-24 PubMed
Med Microbiol Immunol. 1996 May;185(1):11-7 PubMed
J Mol Evol. 2008 Jul;67(1):13-22 PubMed
J Clin Invest. 1996 Nov 1;98(9):1954-8 PubMed
Mol Microbiol. 1998 Apr;28(2):343-53 PubMed
Equine Vet J. 1989 Sep;21(5):351-3 PubMed
J Infect Dis. 1992 Aug;166(2):374-82 PubMed
N Engl J Med. 1989 Jul 6;321(1):1-7 PubMed
Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8317-21 PubMed
Production of hyaluronic acid by mutant strains of group C Streptococcus