The relationship between gadolinium enhancement and [18 F]fluorothymidine uptake in brain lesions with the use of hybrid PET/MRI

. 2024 Aug 19 ; 24 (1) : 110. [epub] 20240819

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39160578

Grantová podpora
FNBr, 65269705 Ministerstvo Zdravotnictví Ceské Republiky
MUNI/A/1388/2021 Ministerstvo Školství, Mládeže a Tělovýchovy

Odkazy

PubMed 39160578
PubMed Central PMC11331680
DOI 10.1186/s40644-024-00761-0
PII: 10.1186/s40644-024-00761-0
Knihovny.cz E-zdroje

BACKGROUND: To evaluate and compare the diagnostic power of [18F]FLT-PET with ceMRI in patients with brain tumours or other focal lesions. METHODS: 121 patients with suspected brain tumour or those after brain tumour surgery were enroled in this retrospective study (61 females, 60 males, mean age 37.3 years, range 1-80 years). All patients underwent [18F]FLT-PET/MRI with gadolinium contrast agent application. In 118 of these patients, a final diagnosis was made, verified by histopathology or by follow-up. Agreement between ceMRI and [18F]FLT-PET of the whole study group was established. Further, sensitivity and specificity of ceMRI and [18F]FLT-PET were calculated for differentiation of high-grade vs. low-grade tumours, high-grade vs. low-grade tumours together with non-tumour lesions and for differentiation of high-grade tumours from all other verified lesions. RESULTS: [18F]FLT-PET and ceMRI findings were concordant in 119 cases (98%). On closer analysis of a subset of 64 patients with verified gliomas, the sensitivity and specificity of both PET and ceMRI were identical (90% and 84%, respectively) for differentiating low-grade from high-grade tumours, if the contrast enhancement and [18F]FLT uptake were considered as hallmarks of high-grade tumour. For differentiation of high-grade tumours from low-grade tumours and lesions of nontumorous aetiology (e.g., inflammatory lesions or post-therapeutic changes) in a subgroup of 93 patients by visual evaluation, the sensitivity of both PET and ceMRI was 90%, whereas the specificity of PET was slightly higher (61%) compared to ceMRI (57%). By receiver operating characteristic analysis, the sensitivity and specificity were 82% and 74%, respectively, when the threshold of SUVmax in the tumour was set to 0.9 g/ml. CONCLUSION: We demonstrated a generally very high correlation of [18F]FLT accumulation with contrast enhancement visible on ceMRI and a comparable diagnostic yield in both modalities for differentiating high-grade tumours from low-grade tumours and lesions of other aetiology.

Zobrazit více v PubMed

Kim YZ, Kim CY, Lim DH. The overview of practical guidelines for gliomas by KSNO, NCCN, and EANO. Brain Tumor Res Treat. 2022;10(2):83. 10.14791/btrt.2022.0001. 10.14791/btrt.2022.0001 PubMed DOI PMC

Galldiks N, Lohmann P, Albert NL, Tonn JC, Langen KJ. Current status of PET imaging in neuro-oncology. Neuro-Oncology Adv. 2019;1(1):vdz010. 10.1093/noajnl/vdz010.10.1093/noajnl/vdz010 PubMed DOI PMC

Choi SJ, Kim JS, Kim JH, et al. [18F]3′-deoxy-3′-fluorothymidine PET for the diagnosis and grading of brain tumors. Eur J Nucl Med Mol Imaging. 2005;32(6):653–9. 10.1007/s00259-004-1742-3. 10.1007/s00259-004-1742-3 PubMed DOI

Shaw TB, Jeffree RL, Thomas P, et al. Diagnostic performance of 18F-fluorodeoxyglucose positron emission tomography in the evaluation of glioma. J Med Imaging Radiat Oncol. 2019;63(5):650–6. 10.1111/1754-9485.12929. 10.1111/1754-9485.12929 PubMed DOI

Chen W, Delaloye S, Silverman DHS, et al. Predicting Treatment response of malignant gliomas to Bevacizumab and Irinotecan by Imaging Proliferation with [ 18 F] Fluorothymidine Positron Emission Tomography: a pilot study. JCO. 2007;25(30):4714–21. 10.1200/JCO.2006.10.5825.10.1200/JCO.2006.10.5825 PubMed DOI

Jacobs AH, Thomas A, Kracht LW, et al. 18F-Fluoro-l-Thymidine and 11 C-Methylmethionine as Markers of Increased Transport and proliferation in brain tumors. J Nucl Med. 2005;46(12):1948–58. PubMed

Shields AF, Grierson JR, Dohmen BM, et al. Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med. 1998;4(11):1334–6. 10.1038/3337. 10.1038/3337 PubMed DOI

Toyohara J, Waki A, Takamatsu S, Yonekura Y, Magata Y, Fujibayashi Y. Basis of FLT as a cell proliferation marker: comparative uptake studies with [3H]thymidine and [3H]arabinothymidine, and cell-analysis in 22 asynchronously growing tumor cell lines. Nucl Med Biol. 2002;29(3):281–7. 10.1016/S0969-8051(02)00286-X. 10.1016/S0969-8051(02)00286-X PubMed DOI

Nikaki A, Papadopoulos V, Valotassiou V, et al. Evaluation of the performance of 18F-Fluorothymidine Positron Emission Tomography/Computed tomography (18F-FLT-PET/CT) in metastatic brain lesions. Diagnostics. 2019;9(1):17. 10.3390/diagnostics9010017. 10.3390/diagnostics9010017 PubMed DOI PMC

Ferdová E, Ferda J, Baxa J, et al. Assessment of grading in newly-diagnosed glioma using 18F-fluorothymidine PET/CT. Anticancer Res. 2015;35(2):955–9. PubMed

Ullrich R, Backes H, Li H, et al. Glioma Proliferation as assessed by 3‘-Fluoro-3’-Deoxy- l -Thymidine Positron Emission Tomography in patients with newly diagnosed high-Grade Glioma. Clin Cancer Res. 2008;14(7):2049–55. 10.1158/1078-0432.CCR-07-1553. 10.1158/1078-0432.CCR-07-1553 PubMed DOI

Shinomiya A, Kawai N, Okada M, et al. Evaluation of 3′-deoxy-3′-[18F]-fluorothymidine (18F-FLT) kinetics correlated with thymidine kinase-1 expression and cell proliferation in newly diagnosed gliomas. Eur J Nucl Med Mol Imaging. 2013;40(2):175–85. 10.1007/s00259-012-2275-9. 10.1007/s00259-012-2275-9 PubMed DOI

Morikawa A, Grkovski M, Patil S, et al. A phase I trial of sorafenib with whole brain radiotherapy (WBRT) in breast cancer patients with brain metastases and a correlative study of FLT-PET brain imaging. Breast Cancer Res Treat. 2021;188(2):415–25. 10.1007/s10549-021-06209-4. 10.1007/s10549-021-06209-4 PubMed DOI PMC

Wardak M, Schiepers C, Cloughesy TF, Dahlbom M, Phelps ME, Huang SC. 18F-FLT and 18F-FDOPA PET kinetics in recurrent brain tumors. Eur J Nucl Med Mol Imaging. 2014;41(6):1199–209. 10.1007/s00259-013-2678-2. 10.1007/s00259-013-2678-2 PubMed DOI PMC

Brahm CG, Den Hollander MW, Enting RH, et al. Serial FLT PET imaging to discriminate between true progression and pseudoprogression in patients with newly diagnosed glioblastoma: a long-term follow-up study. Eur J Nucl Med Mol Imaging. 2018;45(13):2404–12. 10.1007/s00259-018-4090-4. 10.1007/s00259-018-4090-4 PubMed DOI PMC

Boellaard R, O’Doherty MJ, Weber WA, et al. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging. 2010;37(1):181–200. 10.1007/s00259-009-1297-4. 10.1007/s00259-009-1297-4 PubMed DOI PMC

Thust SC, Van Den Bent MJ, Smits M. Pseudoprogression of brain tumors. Magn Reson Imaging. 2018;48(3):571–89. 10.1002/jmri.26171.10.1002/jmri.26171 PubMed DOI PMC

Yamamoto Y, Wong TZ, Turkington TG, Hawk TC, Reardon DA, Coleman RE. 3′-Deoxy-3′-[F-18]Fluorothymidine Positron Emission Tomography in patients with recurrent Glioblastoma Multiforme: comparison with Gd-DTPA enhanced magnetic resonance imaging. Mol Imaging Biol. 2006;8(6):340–7. 10.1007/s11307-006-0063-2. 10.1007/s11307-006-0063-2 PubMed DOI

Nowosielski M, DiFranco MD, Putzer D et al. A Annala ed. 2014 An intra-individual comparison of MRI, [18F]-FET and [18F]-FLT PET in patients with high-Grade Gliomas. PLoS ONE 9 4 e95830 10.1371/journal.pone.0095830. 10.1371/journal.pone.0095830 PubMed DOI PMC

Jeong SY, Lee TH, Rhee CH, et al. 3′-Deoxy-3′-[18F]fluorothymidine and O-(2-[18F]fluoroethyl)-L-tyrosine PET in patients with suspicious recurrence of Glioma after Multimodal Treatment: initial results of a retrospective comparative study. Nucl Med Mol Imaging. 2010;44(1):45–54. 10.1007/s13139-009-0007-2. 10.1007/s13139-009-0007-2 PubMed DOI PMC

Cui M, Zorrilla-Veloz RI, Hu J, Guan B, Ma X. Diagnostic accuracy of PET for differentiating true glioma progression from Post Treatment-related changes: a systematic review and Meta-analysis. Front Neurol. 2021;12:671867. 10.3389/fneur.2021.671867. 10.3389/fneur.2021.671867 PubMed DOI PMC

Shishido H, Kawai N, Miyake K, Yamamoto Y, Nishiyama Y, Tamiya T. Diagnostic value of 11 C-Methionine (MET) and 18F-Fluorothymidine (FLT) Positron Emission Tomography in Recurrent High-Grade gliomas; differentiation from Treatment-Induced tissue necrosis. Cancers. 2012;4(1):244–56. 10.3390/cancers4010244. 10.3390/cancers4010244 PubMed DOI PMC

Nihashi T, Dahabreh IJ, Terasawa T. Diagnostic accuracy of PET for recurrent glioma diagnosis: a Meta-analysis. AJNR Am J Neuroradiol. 2013;34(5):944–50. 10.3174/ajnr.A3324. 10.3174/ajnr.A3324 PubMed DOI PMC

de Zwart PL, van Dijken BRJ, Holtman GA, et al. Diagnostic Accuracy of PET Tracers for the differentiation of Tumor Progression from Treatment-related changes in high-Grade Glioma: a systematic review and metaanalysis. J Nucl Med. 2020;61(4):498–504. 10.2967/jnumed.119.233809. 10.2967/jnumed.119.233809 PubMed DOI

Yao Y, Tan X, Yin W, et al. Performance of 18 F-FAPI PET/CT in assessing glioblastoma before radiotherapy: a pilot study. BMC Med Imaging. 2022;22(1):226. 10.1186/s12880-022-00952-w. 10.1186/s12880-022-00952-w PubMed DOI PMC

Dimitrakopoulou-Strauss A, Pan L, Sachpekidis C. Kinetic modeling and parametric imaging with dynamic PET for oncological applications: general considerations, current clinical applications, and future perspectives. Eur J Nucl Med Mol Imaging. 2021;48(1):21–39. 10.1007/s00259-020-04843-6. 10.1007/s00259-020-04843-6 PubMed DOI PMC

Scarpelli M, Simoncic U, Perlman S, Liu G, Jeraj R. Dynamic 18 F-FLT PET imaging of spatiotemporal changes in tumor cell proliferation and vasculature reveals the mechanistic actions of anti-angiogenic therapy. Phys Med Biol. 2018;63(15):155008. 10.1088/1361-6560/aad1be. 10.1088/1361-6560/aad1be PubMed DOI

Wardak M, Schiepers C, Dahlbom M, et al. Discriminant analysis of 18F-Fluorothymidine kinetic parameters to Predict Survival in patients with recurrent high-Grade Glioma. Clin Cancer Res. 2011;17(20):6553–62. 10.1158/1078-0432.CCR-10-3290. 10.1158/1078-0432.CCR-10-3290 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...