Enzymatic characterization and molecular modeling of an evolutionarily interesting fungal β-N-acetylhexosaminidase
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
- MeSH
- beta-N-acetylhexosaminidasy chemie genetika izolace a purifikace metabolismus MeSH
- fungální proteiny chemie genetika izolace a purifikace metabolismus MeSH
- glykosylace MeSH
- katalytická doména MeSH
- kinetika MeSH
- koncentrace vodíkových iontů MeSH
- konzervovaná sekvence MeSH
- mannosyl-glykoprotein endo-beta-N-acetylglukosaminidasa metabolismus MeSH
- molekulární modely * MeSH
- molekulární sekvence - údaje MeSH
- Penicillium enzymologie genetika MeSH
- prekurzory enzymů chemie genetika izolace a purifikace metabolismus MeSH
- sekundární struktura proteinů MeSH
- sekvence aminokyselin MeSH
- sekvenční homologie aminokyselin MeSH
- sekvenční seřazení MeSH
- simulace molekulární dynamiky MeSH
- stabilita enzymů MeSH
- substrátová specifita MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- beta-N-acetylhexosaminidasy MeSH
- fungální proteiny MeSH
- mannosyl-glykoprotein endo-beta-N-acetylglukosaminidasa MeSH
- prekurzory enzymů MeSH
Fungal β-N-acetylhexosaminidases are inducible extracellular enzymes with many biotechnological applications. The enzyme from Penicillium oxalicum has unique enzymatic properties despite its close evolutionary relationship with other fungal hexosaminidases. It has high GalNAcase activity, tolerates substrates with the modified N-acyl group better and has some other unusual catalytic properties. In order to understand these features, we performed isolation, biochemical and enzymological characterization, molecular cloning and molecular modelling. The native enzyme is composed of two catalytic units (65 kDa each) and two propeptides (15 kDa each), yielding a molecular weight of 160 kDa. Enzyme deglycosylated by endoglycosidase H had comparable activity, but reduced stability. We have cloned and sequenced the gene coding for the entire hexosaminidase from P. oxalicum. Sufficient sequence identity of this hexosaminidase with the structurally solved enzymes from bacteria and humans with complete conservation of all catalytic residues allowed us to construct a molecular model of the enzyme. Results from molecular dynamics simulations and substrate docking supported the experimental kinetic and substrate specificity data and provided a molecular explanation for why the hexosaminidase from P. oxalicum is unique among the family of fungal hexosaminidases.
Citace poskytuje Crossref.org
GENBANK
EU189026