Effect of clone selection, nitrogen supply, leaf damage and mycorrhizal fungi on stilbene and emodin production in knotweed
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
21624119
PubMed Central
PMC3123627
DOI
10.1186/1471-2229-11-98
PII: 1471-2229-11-98
Knihovny.cz E-resources
- MeSH
- Biomass MeSH
- Nitrogen metabolism MeSH
- Emodin metabolism MeSH
- Plant Leaves chemistry drug effects MeSH
- Mycorrhizae growth & development MeSH
- Rhizome chemistry microbiology MeSH
- Polygonum chemistry growth & development microbiology MeSH
- Fertilizers MeSH
- Soil chemistry MeSH
- Seasons MeSH
- Stilbenes metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Nitrogen MeSH
- Emodin MeSH
- Fertilizers MeSH
- Soil MeSH
- Stilbenes MeSH
BACKGROUND: Fallopia japonica and its hybrid, F. xbohemica, due to their fast spread, are famous as nature threats rather than blessings. Their fast growth rate, height, coverage, efficient nutrient translocation between tillers and organs and high phenolic production, may be perceived either as dangerous or beneficial features that bring about the elimination of native species or a life-supporting source. To the best of our knowledge, there have not been any studies aimed at increasing the targeted production of medically desired compounds by these remarkable plants. We designed a two-year pot experiment to determine the extent to which stilbene (resveratrol, piceatannol, resveratrolosid, piceid and astringins) and emodin contents of F. japonica, F. sachalinensis and two selected F. xbohemica clones are affected by soil nitrogen (N) supply, leaf damage and mycorrhizal inoculation. RESULTS: 1) Knotweeds are able to grow on substrates with extremely low nitrogen content and have a high efficiency of N translocation. The fast-spreading hybrid clones store less N in their rhizomes than the parental species. 2) The highest concentrations of stilbenes were found in the belowground biomass of F. japonica. However, because of the high belowground biomass of one clone of F. xbohemica, this hybrid produced more stilbenes per plant than F. japonica. 3) Leaf damage increased the resveratrol and emodin contents in the belowground biomass of the non-inoculated knotweed plants. 4) Although knotweed is supposed to be a non-mycorrhizal species, its roots are able to host the fungi. Inoculation with mycorrhizal fungi resulted in up to 2% root colonisation. 5) Both leaf damage and inoculation with mycorrhizal fungi elicited an increase of the piceid (resveratrol-glucoside) content in the belowground biomass of F. japonica. However, the mycorrhizal fungi only elicited this response in the absence of leaf damage. Because the leaf damage suppressed the effect of the root fungi, the effect of leaf damage prevailed over the effect of the mycorrhizal fungi on the piceid content in the belowground biomass. CONCLUSIONS: Two widely spread knotweed species, F. japonica and F. xbohemica, are promising sources of compounds that may have a positive impact on human health. The content of some of the target compounds in the plant tissues can be significantly altered by the cultivation conditions including stress imposed on the plants, inoculation with mycorrhizal fungi and selection of the appropriate plant clone.
See more in PubMed
Mandak B, Pysek P, Bimova K. History of the invasion and distribution of Reynoutria taxa in the Czech Republic: a hybrid spreading faster than its parents. Preslia. 2004;76:15–64.
Pysek P, Brock JH, Bimova K, Mandak B, Jarosik V, Koukolikova I, Pergl J, Stepanek J. Vegetative regeneration in invasive Reynoutria (Polygonaceae) taxa: The determinant of invasibility at the genotype level. American Journal of Botany. 2003;90(10):1487–1495. doi: 10.3732/ajb.90.10.1487. PubMed DOI
Murrell C, Gerber E, Krebs C, Parepa M, Schaffner U, Bossdorf O. Invasive Knotweed Affects Native Plants through Allelopathy. American Journal of Botany. 2011;98(1):38–43. doi: 10.3732/ajb.1000135. PubMed DOI
Gerber E, Krebs C, Murrell C, Moretti M, Rocklin R, Schaffner U. Exotic invasive knotweeds (Fallopia spp.) negatively affect native plant and invertebrate assemblages in European riparian habitats. Biological Conservation. 2008;141(3):646–654. doi: 10.1016/j.biocon.2007.12.009. DOI
Barták R, Konupková-Kalousová Š, Krupová B. Metodika likvidace invazních druhů křídlatek (Reynoutria spp.) Český Tĕšín. 2010. p. 32.
Fan EG, Zhang K, Zhu MZ, Wang QA. Obtaining Resveratrol: from Chemical Synthesis to Biotechnological Production. Mini-Reviews in Organic Chemistry. 2010;7(4):272–281. doi: 10.2174/157019310792246454. DOI
Strasil Z. In: Energetic Plants. Petříková Vea, editor. Profi Press: Praha; 2006. Křídlatky (Knotweeds) (Reynoutria) pp. 33–39.
Kovarova M, Bartunkova K, Frantik T, Koblihova H, Prchalova K, Vosatka M. Factors influencing the production of stilbenes by the knotweed, Reynoutria xbohemica. BMC Plant Biology. 2010;10:19. doi: 10.1186/1471-2229-10-19. PubMed DOI PMC
Bimova K, Mandak B, Pysek P. Vegetative regeneration in invasive Reynoutria Polygonaceae): a comparative experimental study of four congeners. Plant Ecology. 2003;166:1–11. doi: 10.1023/A:1023299101998. DOI
Hirose T. Nitrogen Use Efficiency in Growth of Polygonum-Cuspidatum Sieb Et Zucc. Annals of Botany. 1984;54(5):695–704.
Hirose T, Kitajima K. Nitrogen Uptake and Plant-Growth.1. Effect of Nitrogen Removal on Growth of Polygonum-Cuspidatum. Annals of Botany. pp. 479–486.
Fuiyoshi M, Masuzawa T, Kagawa A, Nakatsubo T. Successional changes in mycorrhizal type in the pioneer plant communities of a subalpine volcanic desert on Mt. Fuji, Japan. Polar Biosci. 2005;18:60–72.
Bavaresco L, Pezzutto S, Ragga A, Ferrari F, Trevisan M. Effect of nitrogen supply on trans-resveratrol concentration in berries of Vitis vinifera L.cv. Cabernet Sauvignon. Vitis. 2001;40(4):229–230.
Jones CG, Hartley SE. A protein competition model of phenolic allocation. Oikos. 1999;86(1):27–44. doi: 10.2307/3546567. DOI
Muto A, Hori M, Sasaki Y, Saitoh A, Yasuda I, Maekawa T, Uchida T, Asakura K, Nakazato T, Kaneda T, Kizaki M, Ikeda Y, Yoshida T. Emodin has a cytotoxic activity against human multiple myeloma as a Janus-activated kinase 2 inhibitor. Mol Cancer Ther. 2007;6(3):987–94. doi: 10.1158/1535-7163.MCT-06-0605. PubMed DOI
Fu ZY, Han JX, Huang HY. Effects of emodin on gene expression profile in small cell lung cancer NCI-H446 cells. Chinese Medical Journal. 2007;120(19):1710–1715. PubMed
Pecere T, Gazzola MV, Mucignat C, Parolin C, Dalla Vecchia F, Cavaggioni A, Basso G, Diaspro A, Salvato B, Carli M, Palu G. Aloe-emodin is a new type of anticancer agent with selective activity against neuroectodermal tumors. Cancer Research. 2000;60(11):2800–2804. PubMed
Lu YY, Zhang JL, Qian JM. The effect of emodin on VEGF receptors in human colon cancer cells. Cancer Biotherapy and Radiopharmaceuticals. 2008;23(2):222–228. doi: 10.1089/cbr.2007.0425. PubMed DOI
Shieh DE, Chen YY, Yen MH, Chiang LC, Lin CC. Emodin-induced apoptosis through p53-dependent pathway in human hepatoma cells. Life Sci. 2004;74(18):2279–90. doi: 10.1016/j.lfs.2003.09.060. PubMed DOI
Docherty JJ, Fu MM, Tsai M. Resveratrol selectively inhibits Neisseria gonorrhoeae and Neisseria meningitidis. Journal of Antimicrobial Chemotherapy. 2001;47(2):243–244. doi: 10.1093/jac/47.2.243. PubMed DOI
Chan MMY. Antimicrobial effect of resveratrol on dermatophytes and bacterial pathogens of the skin. Biochemical Pharmacology. 2002;63(2):99–104. doi: 10.1016/S0006-2952(01)00886-3. PubMed DOI
Jung HJ, Hwang IA, Sung WS, Kang H, Kang BS, Seu YB, Lee DG. Fungicidal effect of resveratrol on human infectious fungi. Archives of Pharmacal Research. 2005;28(5):557–560. doi: 10.1007/BF02977758. PubMed DOI
Schubert R, Fischer R, Hain R, Schreier PH, Bahnweg G, Ernst D, Sandermann H. An ozone-responsive region of the grapevine resveratrol synthase promoter differs from the basal pathogen-responsive sequence. Plant Molecular Biology. 1997;34(3):417–426. doi: 10.1023/A:1005830714852. PubMed DOI
Soleas GJ, Diamandis EP, Goldberg DM. Resveratrol: A molecule whose time has come? And gone? Clinical Biochemistry. 1997;30(2):91–113. doi: 10.1016/S0009-9120(96)00155-5. PubMed DOI
Ulrich S, Wolter F, Stein JM. Molecular mechanisms of the chemopreventive effects of resveratrol and its analogs in carcinogenesis. Molecular Nutrition & Food Research. 2005;49(5):452–461. doi: 10.1002/mnfr.200400081. PubMed DOI
Wolter F, Ulrich S, Stein J. Molecular mechanisms of the chemopreventive effects of resveratrol and its analogs in colorectal cancer: Key role of polyamines? Journal of Nutrition. 2004;134(12):3219–3222. PubMed
Sun WM, Wang W, Kim J, Keng P, Yang SM, Zhang HS, Liu CM, Okunieff P, Zhang LR. Anti-cancer effect of resveratrol is associated with induction of apoptosis via a mitochondrial pathway alignment. Oxygen Transport to Tissue Xxix. 2008;614:179–186. doi: 10.1007/978-0-387-74911-2_21. PubMed DOI
El-Mowafy AM, Alkhalaf M. Resveratrol activates adenylyl-cyclase in human breast cancer cells: a novel, estrogen receptor-independent cytostatic mechanism. Carcinogenesis. 2003;24(5):869–873. doi: 10.1093/carcin/bgg015. PubMed DOI
Kerem Z, Bilkis I, Flaishman MA, Sivan U. Antioxidant activity and inhibition of alpha-glucosidase by trans-resveratrol, piceid, and a novel trans-stilbene from the roots of Israeli Rumex bucephalophorus L. Journal of Agricultural and Food Chemistry. 2006;54(4):1243–1247. doi: 10.1021/jf052436+. PubMed DOI
Jeandet P, Bessis R, Maume BF, Meunier P, Peyron D, Trollat P. Effect of Enological Practices on the Resveratrol Isomer Content of Wine. Journal of Agricultural and Food Chemistry. 1995;43(2):316–319. doi: 10.1021/jf00050a010. DOI
Langcake P, Mccarthy WV. Relationship of Resveratrol Production to Infection of Grapevine Leaves by Botrytis-Cinerea. Vitis. 1979;18(3):244–253.
Filip V, Plockova M, Smidrkal J, Spickova Z, Melzoch K, Schmidt S. Resveratrol and its antioxidant and antimicrobial effectiveness. Food Chemistry. 2003;83(4):585–593. doi: 10.1016/S0308-8146(03)00157-2. DOI
Bavaresco L, Vezzulli S, Battilani P, Giorni P, Pietri A, Bertuzzi T. Effect of ochratoxin A-producing Aspergilli on stilbenic phytoalexin synthesis in grapes. Journal of Agricultural and Food Chemistry. 2003;51(21):6151–6157. doi: 10.1021/jf0301908. PubMed DOI
Adrian M, Jeandet P, Veneau J, Weston LA, Bessis R. Biological activity of resveratrol, a stilbenic compound from grapevines, against Botrytis cinerea, the causal agent for gray mold. Journal of Chemical Ecology. 1997;23(7):1689–1702.
Harley JL, Harley EL. A Checklist of Mycorrhiza in the British Flora-Addenda, Errata and Index. New Phytologist. 1987;107(4):741–749. doi: 10.1111/j.1469-8137.1987.tb00912.x. DOI
Gianinazzi S, Gollotte A, Binet MN, van Tuinen D, Redecker D, Wipf D. Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza. 2010;20(8):519–530. doi: 10.1007/s00572-010-0333-3. PubMed DOI
Jain E, Bairoch A, Duvaud S, Phan I, Redaschi N, Suzek BE, Martin MJ, McGarvey P, Gasteiger E. Infrastructure for the life sciences: design and implementation of the UniProt website. Bmc Bioinformatics. 2009;10 PubMed PMC
Xu W, Yu Y, Ding J, Hua Z, Wang Y. Characterization of a novel stilbene synthase promoter involved in pathogen- and stress-inducible expression from Chinese wild Vitis pseudoreticulata. Planta. 2010;231(2):475–87. doi: 10.1007/s00425-009-1062-8. PubMed DOI
Grafi G, Chalifa-Caspi V, Nagar T, Plaschkes I, Barak S, Ransbotyn V. Plant response to stress meets dedifferentiation. Planta. 2011;233(3):433–8. doi: 10.1007/s00425-011-1366-3. PubMed DOI
Dixon RA, Paiva NL. Stress-Induced Phenylpropanoid Metabolism. Plant Cell. 1995;7(7):1085–1097. PubMed PMC
Nykanen H, Koricheva J. Damage-induced changes in woody plants and their effects on insect herbivore performance: a meta-analysis. Oikos. 2004;104(2):247–268. doi: 10.1111/j.0030-1299.2004.12768.x. DOI
Hartley SE, Firn RD. Phenolic Biosynthesis, Leaf Damage, and Insect Herbivory in Birch (Betula-Pendula) Journal of Chemical Ecology. 1989;15(1):275–283. doi: 10.1007/BF02027789. PubMed DOI
Evensen PC, Solheim H, Hoiland K, Stenersen J. Induced resistance of Norway spruce, variation of phenolic compounds and their effects on fungal pathogens. Forest Pathology. 2000;30(2):97–108. doi: 10.1046/j.1439-0329.2000.00189.x. DOI
Grace EJ, Cotsaftis O, Tester M, Smith FA, Smith SE. Arbuscular mycorrhizal inhibition of growth in barley cannot be attributed to extent of colonization, fungal phosphorus uptake or effects on expression of plant phosphate transporter genes. New Phytologist. 2009;181(4):938–949. doi: 10.1111/j.1469-8137.2008.02720.x. PubMed DOI
Smith FA, Grace EJ, Smith SE. More than a carbon economy: nutrient trade and ecological sustainability in facultative arbuscular mycorrhizal symbioses. New Phytol. 2009;182(2):347–58. doi: 10.1111/j.1469-8137.2008.02753.x. PubMed DOI
Yu CK Y, Shih CH, Chu IK, Lo C. Accumulation of trans-piceid in sorghum seedlings infected with Colletotrichum sublineolum. Phytochemistry. 2008;69(3):700–706. doi: 10.1016/j.phytochem.2007.09.012. PubMed DOI
Schulze K, Schreiber L, Szankowski I. Inhibiting effects of resveratrol and its glucoside piceid against Venturia inaequalis, the causal agent of apple scab. Journal of Agricultural and Food Chemistry. 2005;53(2):356–362. doi: 10.1021/jf048375h. PubMed DOI
Cichewicz RH, Kouzi SA. Biotransformation of resveratrol to piceid by Bacillus cereus. Journal of Natural Products. 1998;61(10):1313–1314. doi: 10.1021/np980139b. PubMed DOI
Tuomi J, Niemela P, Siren S. The Panglossian Paradigm and Delayed Inducible Accumulation of Foliar Phenolics in Mountain Birch. Oikos. 1990;59(3):399–410. doi: 10.2307/3545152. DOI
Suda J, Travnicek P, Mandak B, Berchova-Bimova K. Genome size as a marker for identifying the invasive alien taxa in Fallopia section Reynoutria. Preslia. 2010;82(1):97–106.
Koske RE, Gemma JN. A Modified Procedure for Staining Roots to Detect Va-Mycorrhizas. Mycological Research. 1989;92:486–505. doi: 10.1016/S0953-7562(89)80195-9. DOI
Trouvelot A, Kough JL, Gianinazzi-Pearson V. In: Physiological and Genetical Aspects of Mycorrhizae. Gianinazzi-Pearson V, Gianinazzi S, editor. INRA Press: Paris; 1986. Mesure du taux de mycorhization VA d'un systeme radiculaire. Recherche de m‚thodes d'estimation ayant une signification fonctionelle; pp. 217–221.
Zbíral J, Urbánková E, Tieffová P, Rychlý M. Analysis of plant material (Analýza rostlinného materiálu) - in Czech. Brno: ÚKZÚZ. 2005. p. 192. PubMed
Olsen SR, Cole CV, Watanabe FS, Dean LA. Estimation of available Phosphorus in Soils by Extraction with Sodium Bicarbonate. USDA Circular No 939, Washinghton D.C. 1954. pp. 1–19.