The effect of ATM and ERK1/2 inhibition on mitoxantrone-induced cell death of leukaemic cells

. 2011 ; 57 (2) : 74-81.

Jazyk angličtina Země Česko Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid21631964
Odkazy

PubMed 21631964
PII: file/5576/FB2011A0012.pdf
Knihovny.cz E-zdroje

The relationship between signal pathways MEK1/2-ERK1/2 and ATM-p53 in the response to DNA damage is not well understood. The aim of our study was to investigate the effect of mitoxantrone and two protein kinase inhibitors - caffeine (inhibitor of ATM kinase) and U0126 (inhibitor of MEK1/2 kinase) - on MOLT-4 and Jurkat leukaemic cell lines. In this work we show that the inhibition of MEK1/2 is associated with an increased mortality of cells after mitoxantrone treatment. Inhibition of ATM by caffeine delayed mitoxantrone-induced cell death in MOLT-4 cells. Mitoxantrone itself induced cell-cycle arrest and accumulation of the cells in late S and G2/M phase. Inhibition of ATM, but not of MEK1/2, abrogated mitoxantrone-induced cell-cycle arrest. Inhibition of MEK1/2 did not change mitoxantroneinduced up-regulation of p53 and p21, but inhibition of ATM markedly decreased up-regulation of p53 and p21, and p53 phosphorylation on serine 15 and serine 392. It can be concluded that: 1) mitoxantrone- induced phosphorylation of p53 on serine 15 and serine 392 is ATM dependent and MEK1/2-ERK1/2 independent. 2) ATM inhibition by caffeine prevents G2 cell arrest and in p53-positive cells MOLT-4 delays the onset of mitoxantrone-induced cell death. 3) Inhibition of MEK1/2-ERK1/2 cascade potentiates the cytostatic effect of mitoxantrone regardless of the p53 status.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...