Ciliary neurotrophic factor promotes motor reinnervation of the musculocutaneous nerve in an experimental model of end-to-side neurorrhaphy
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
21696588
PubMed Central
PMC3224149
DOI
10.1186/1471-2202-12-58
PII: 1471-2202-12-58
Knihovny.cz E-zdroje
- MeSH
- axony účinky léků MeSH
- ciliární neurotrofický faktor aplikace a dávkování MeSH
- krysa rodu Rattus MeSH
- motorické neurony účinky léků MeSH
- nervový transfer metody MeSH
- nervus musculocutaneus účinky léků zranění patofyziologie MeSH
- poranění periferního nervu patofyziologie terapie MeSH
- potkani Wistar MeSH
- regenerace nervu účinky léků fyziologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ciliární neurotrofický faktor MeSH
BACKGROUND: It is difficult to repair nerve if proximal stump is unavailable or autogenous nerve grafts are insufficient for reconstructing extensive nerve damage. Therefore, alternative methods have been developed, including lateral anastomosis based on axons' ability to send out collateral sprouts into denervated nerve. The different capacity of a sensory or motor axon to send a sprout is controversial and may be controlled by cytokines and/or neurotrophic factors like ciliary neurotrophic factor (CNTF). The aim of the present study was to quantitatively assess collateral sprouts sent out by intact motor and sensory axons in the end-to-side neurorrhaphy model following intrathecal administration of CNTF in comparison with phosphate buffered saline (vehiculum) and Cerebrolysin. The distal stump of rat transected musculocutaneous nerve (MCN) was attached in an end-to-side fashion with ulnar nerve. CNTF, Cerebrolysin and vehiculum were administered intrathecally for 2 weeks, and all animals were allowed to survive for 2 months from operation. Numbers of spinal motor and dorsal root ganglia neurons were estimated following their retrograde labeling by Fluoro-Ruby and Fluoro-Emerald applied to ulnar and musculocutaneous nerve, respectively. Reinnervation of biceps brachii muscles was assessed by electromyography, behavioral test, and diameter and myelin sheath thickness of regenerated axons. RESULTS: Vehiculum or Cerebrolysin administration resulted in significantly higher numbers of myelinated axons regenerated into the MCN stumps compared with CNTF treatment. By contrast, the mean diameter of the myelinated axons and their myelin sheath thickness in the cases of Cerebrolysin- or CNTF-treated animals were larger than were those for rats treated with vehiculum. CNTF treatment significantly increased the percentage of motoneurons contributing to reinnervation of the MCN stumps (to 17.1%) when compared with vehiculum or Cerebrolysin treatments (at 9.9 or 9.6%, respectively). Reduced numbers of myelinated axons and simultaneously increased numbers of motoneurons contributing to reinnervation of the MCN improved functional reinnervation of the biceps brachii muscle after CNTF treatment. CONCLUSION: The present experimental study confirms end-to-side neurorrhaphy as an alternative method for reconstructing severed peripheral nerves. CNTF promotes motor reinnervation of the MCN stump after its end-to-side neurorrhaphy with ulnar nerve and improves functional recovery of the biceps brachii muscle.
Zobrazit více v PubMed
Terzis J, Faibisoff B, Williams HB. The nerve gap: suture under tension vs. graft. Plast Reconstr Surg. 1975;56:166–170. doi: 10.1097/00006534-197508000-00008. PubMed DOI
Sunderland S. Nerves and nerve injuries. Churchill Livingstone, Edinburgh; 1978.
Millesi H. Nerve grafting. Clin Plast Surg. 1984;11:105–113. PubMed
Gu X, Ding F, Yang Y, Liu J. Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration. Progr Neurobiol. 2011. pp. 204–230. PubMed
Ballance CA, Ballance HA, Steward P. Remarks on the operative treatment of chronic facial palsy of peripheral origin. Br Med J. 1903;1:1009–1013. doi: 10.1136/bmj.1.2209.1009. PubMed DOI PMC
Lundborg G, Zhao Q, Kanje M, Danielsen N, Kerns JM. Can sensory and motor collateral sprouting be induced from intact peripheral nerve by end-to-side anastomosis? J Hand Surg [Br] 1994;19:277–282. PubMed
Viterbo F, Trindade JC, Hoshino K, Mazzoni A. Two end-to-side neurorrhaphies and nerve graft with removal of the epineural sheath: experimental study in rats. Br J Plast Surg. 1994;47:75–80. doi: 10.1016/0007-1226(94)90162-7. PubMed DOI
Viterbo F, Trindade JC, Hoshino K, Neto AM. End-to-side neurorrhaphy with removal of the epineurial sheath: an experimental study in rats. Plast Reconstr Surg. 1994;94:1038–1047. doi: 10.1097/00006534-199412000-00019. PubMed DOI
Kubek T, Kyr M, Haninec P, Samal F, Dubovy P. Morphological evidence of collateral sprouting of intact afferent and motor axons of the rat ulnar nerve demonstrated by one type of tracer molecule. Ann Anat. 2004;186:231–234. doi: 10.1016/S0940-9602(04)80008-6. PubMed DOI
Tarasidis G, Watanabe O, Mackinnon S, Stausberg S, Haughey B, Hunter D. End-to-side neurorrhaphy: a long term study of neural regeneration in a rat model. Otolaryngol Head Neck Surg. 1998;119:337–341. doi: 10.1016/S0194-5998(98)70074-9. PubMed DOI
Matsumoto M, Hirata H, Nishiyama M, Morita A, Sasaki H, Uchida A. Schwann cells can induce collateral sprouting from intact axon: experimental study of end-to-side neurorrhaphy using a Y-chamber model. J Reconstr Microsurg. 1999;15:281–286. doi: 10.1055/s-2007-1000102. PubMed DOI
Tham SK, Morrison WA. Motor collateral sprouting through an end-to-side nerve repair. J Hand Surg. 1998;23:844–851. doi: 10.1016/S0363-5023(98)80161-5. PubMed DOI
Samal F, Haninec P, Raska O, Dubovy P. Quantitative assessment of the ability of collateral sprouting of the motor and primary sensory neurons after the end-to-side neurorrhaphy of the rat musculocutaneous nerve with the ulnar nerve. Ann Anat. 2006;188:337–344. doi: 10.1016/j.aanat.2006.01.017. PubMed DOI
Gurney ME, Yamamoto H, Kwon Y. Induction of motor neuron sprouting in vivo by ciliary neurotrophic factor and basic fibroblast growth factor. J Neurosci. 1992;12:3241–3247. PubMed PMC
Adler R, Landa KB, Manthorpe M, Varon S. Cholinergic neuronotrophic factors: intraocular distribution of trophic activity for ciliary neurons. Science. 1979;204:1434–1436. doi: 10.1126/science.451576. PubMed DOI
Lin LF, Mismer D, Lile JD, Armes LG, Butler ET3, Vannice JL, Collins F. Purification, cloning, and expression of ciliary neurotrophic factor (CNTF) Science. 1989;246:1023–1025. doi: 10.1126/science.2587985. PubMed DOI
Stöckli KA, Lottspeich F, Sendtner M, Masiakowski P, Carroll P, Götz R, Lindholm D, Thoenen H. Molecular-cloning, expression and regional distribution of rat ciliary neurotrophic factor. Nature. 1989;342:920–923. doi: 10.1038/342920a0. PubMed DOI
Sendtner M, Carrol P, Holtmann B, Hughes RA, Thoenen H. Ciliary neurotrophic factor. J Neurobiol. 1994;25:1436–1453. doi: 10.1002/neu.480251110. PubMed DOI
Ip NY, Yancopoulos GD. Ciliary neurotrophic factor and its receptor complex. Prog Growth Factor Res. 1992;4:139–155. doi: 10.1016/0955-2235(92)90028-G. PubMed DOI
Richardson PM. Ciliary neurotrophic factor: a review. Pharmacol Ther. 1994;63:187–198. doi: 10.1016/0163-7258(94)90045-0. PubMed DOI
Skaper SD, Varon S. Age-dependent control of dorsal-root ganglion neuron survival by macromolecular and low-molecular-weight trophic agents and substratum-bound laminins. Dev Brain Res. 1986;24:39–46. doi: 10.1016/0165-3806(86)90171-9. PubMed DOI
Ip NY, Maisonpierre P, Alderson R, Friedman B, Furth ME, Panayotatos N, Squinto S, Yancopoulos GD, Lindsay RM. The neurotrophins and CNTF: specificity of action towards PNS and CNS neurons. J Physiol Paris. 1991;85:123–130. PubMed
Sendtner M, Stockli KA, Thoenen H. Synthesis and localization of ciliary neurotrophic factor in the sciatic nerve of the adult rat after lesion and during regeneration. J Cell Biol. 1992;118:139–148. doi: 10.1083/jcb.118.1.139. PubMed DOI PMC
Wong V, Arriaga R, Ip NY, Lindsay RM. The neurotrophins BDNF, NT-3 and NT-4/5, but not NGF, up-regulate the cholinergic phenotype of developing motor-neurons. Eur J Neurosci. 1993;5:466–474. doi: 10.1111/j.1460-9568.1993.tb00513.x. PubMed DOI
Lärkfors L, Lindsay RM, Alderson RF. Ciliary neurotrophic factor enhances the survival of Purkinje cells in vitro. Eur J Neurosci. 1994;6:1015–1025. doi: 10.1111/j.1460-9568.1994.tb00596.x. PubMed DOI
Hutter-Paier B, Steiner E, Windisch M. Cerebrolysin protects isolated cortical neurons from neurodegeneration after brief histotoxic hypoxia. J Neural Transm Suppl. 1998;53:351–361. PubMed
Satou T, Itoh T, Tamai Y, Ohde H, Anderson AJ, Hashimoto S. Neurotrophic effects of FPF-1070 (Cerebrolysin) on cultured neurons from chicken embryo dorsal root ganglia, ciliary ganglia, and sympathetic trunks. J Neural Transm. 2000;107:1253–1262. doi: 10.1007/s007020070015. PubMed DOI
Haninec P, Houst'ava L, Stejskal L, Dubovy P. Rescue of rat spinal motoneurons from avulsion-induced cell death by intrathecal administration of IGF-I and Cerebrolysin. Ann Anat. 2003;185:233–238. doi: 10.1016/S0940-9602(03)80030-4. PubMed DOI
Haninec P, Dubovy P, Samal F, Houstava L, Stejskal L. Reinnervation of the rat musculocutaneous nerve stump after its direct reconnection with the C5 spinal cord segment by the nerve graft following avulsion of the ventral spinal roots: a comparison of intrathecal administration of brain-derived neurotrophic factor and Cerebrolysin. Exp Brain Res. 2004;15:425–432. PubMed
Albrecht E, Hingel S, Crailsheim K, Windisch M. The effects of Cerebrolysin on survival and sprouting of neurons from cerebral hemispheres and from the brainstem of chick embryos in vitro. Adv Biosci. 1993;87:341–342.
Kimura J. Electrodiagnosis in diseases of nerve and muscle: principles and practice. Oxford University Press, USA; 1989. pp. 55–77.
Waxman SG. Conduction in myelinated, unmyelinated, and demyelinated fibers. Arch Neurol. 1977;34:585–589. PubMed
Samii M, Carvalho GA, Nikkhah G, Penkert G. Surgical reconstruction of the musculocutaneous nerve in traumatic brachial plexus injuries. Neurosurg Focus. 1997;3:E2. PubMed
Carlstedt T, Grane P, Hallin RG, Noren G. Return of function after spinal cord implantation of avulsed spinal nerve roots. Lancet. 1995;346:1323–1325. doi: 10.1016/S0140-6736(95)92342-X. PubMed DOI
Zhang ZJ, Soucacos PN, Bo JY, Beris AE. Evaluation of collateral sprouting after end-to-side nerve coaptation using a fluorescent double-labeling technique. Microsurgery. 1999;19:281–286. doi: 10.1002/(SICI)1098-2752(1999)19:6<281::AID-MICR5>3.0.CO;2-D. PubMed DOI
Kanje M, Arai T, Lundborg G. Collateral sprouting from sensory and motor axons into an end to side attached nerve segment. NeuroReport. 2000;11:2455–2459. doi: 10.1097/00001756-200008030-00023. PubMed DOI
David S, Braun PE, Jackson DL, Kottis V, Mckerracher L. Laminin overrides the inhibitory effects of peripheral nervous system and central nervous system myelin-derived inhibitors of neurite growth. J Neurosci Res. 1995;42:594–602. doi: 10.1002/jnr.490420417. PubMed DOI
Schäfer M, Fruttiger M, Montag D, Schachner M, Martini R. Disruption of the gene for the myelin-associated glycoprotein improves axonal regrowth along myelin in C57BL/Wlds mice. Neuron. 1996;16:1107–1113. doi: 10.1016/S0896-6273(00)80137-3. PubMed DOI
Pot C, Simonen M, Weinmann O, Schnell L, Christ F, Stoeckle S, Berger P, Rulicke T, Suter U, Schwab ME. Nogo-A expressed in Schwann cells impairs axonal regeneration after peripheral nerve injury. J Cell Biol. 2002;159:29–35. doi: 10.1083/jcb.200206068. PubMed DOI PMC
Liuzzi FJ, Tedeschi B. Peripheral nerve regeneration. Neurosurg Clin N Am. 1991;2:31–42. PubMed
Son YJ, Thompson WJ. Schwann-cell processes guide regeneration of peripheral axons. Neuron. 1995;14:125–132. doi: 10.1016/0896-6273(95)90246-5. PubMed DOI
Fu SY, Gordon T. The cellular and molecular basis of peripheral nerve regeneration. Mol Neurobiol. 1997;14:67–116. doi: 10.1007/BF02740621. PubMed DOI
Caroni P, Grandes P. Nerve sprouting in innervated adult skeletal-muscle induced by exposure to elevated levels of insulin-like growth factors. J Cell Biol. 1990;110:1307–1317. doi: 10.1083/jcb.110.4.1307. PubMed DOI PMC
Fortes WM, Noah EM, Liuzzi FJ, Terzis JK. End-to-side neurorrhaphy: evaluation of axonal response and upregulation of IGF-I and IGF-II in a non-injury model. J Reconstr Microsurg. 1999;15:449–457. doi: 10.1055/s-2007-1000126. PubMed DOI
Caplan J, Tiangco DA, Terzis JK. Effects of IGF-II in a new end-to-side model. J Reconstr Microsurg. 1999;15:351–358. doi: 10.1055/s-2007-1000115. PubMed DOI
Tiangco DA, Papakonstantinou KC, Mullinax KA, Terzis JK. IGF-I and end-to-side nerve repair: a dose-response study. J Reconstr Microsurg. 2001;17:247–256. doi: 10.1055/s-2001-14516. PubMed DOI
Sendtner M, Kreutzberg GW, Thoenen H. Ciliary neurotrophic factor prevents the degeneration of motor neurons after axotomy. Nature. 1990;345:440–441. doi: 10.1038/345440a0. PubMed DOI
Sahenk Z, Seharaseyon J, Mendell JR. CNTF potentiates peripheral nerve regeneration. Brain Res. 1994;655:246–250. doi: 10.1016/0006-8993(94)91621-7. PubMed DOI
Siegel SG, Patton B, English AW. Ciliary neurotrophic factor is required for motoneuron sprouting. Exp Neurol. 2000;166:205–212. doi: 10.1006/exnr.2000.7528. PubMed DOI
Bajrovic F, Kovacic U, Pavcnik M, Sketelj J. Interneuronal signalling is involved in induction of collateral sprouting of nociceptive axons. Neuroscience. 2002;111:587–596. doi: 10.1016/S0306-4522(01)00588-7. PubMed DOI
Oberlin C, Beal D, Leechavengvongs S, Salon A, Dauge MC, Sarcy JJ. Nerve transfer to biceps muscle using a part of ulnar nerve for C5-C6 avulsion of the brachial plexus: anatomical study and report of four cases. J Hand Surg [Am] 1994;19:232–237. doi: 10.1016/0363-5023(94)90011-6. PubMed DOI
Hennig R, Lomo T. Firing patterns of motor units in normal rats. Nature. 1985;314:164–166. doi: 10.1038/314164a0. PubMed DOI
Angelov DN, Guntinas-Lichius O, Wewetzer K, Neiss WF, Streppel M. Axonal branching and recovery of coordinated muscle activity after transection of the facial nerve in adult rats. Adv Anat Embryol Cell Biol. 2005;180:1–130. PubMed
Guntinas-Lichius O, Irintchev A, Streppel M, Lenzen M, Grosheva M, Wewetzer K, Neiss WF, Angelov DN. Factors limiting motor recovery after facial nerve transection in the rat: combined structural and functional analyses. Eur J Neurosci. 2005;21:391–402. doi: 10.1111/j.1460-9568.2005.03877.x. PubMed DOI
Grosheva M, Guntinas-Lichius O, Angelova SK, Kuerten S, Alvanou A, Streppel M, Skouras E, Sinis N, Pavlov S, Angelov DN. Local stabilization of microtubule assembly improves recovery of facial nerve function after repair. Exp Neurol. 2008;209:131–144. doi: 10.1016/j.expneurol.2007.09.016. PubMed DOI
Madison RD, Sofroniew MV, Robinson GA. Schwann cell influence on motor neuron regeneration accuracy. Neuroscience. 2009;163:213–221. doi: 10.1016/j.neuroscience.2009.05.073. PubMed DOI PMC
Cajal RS. Degeneration and regeneration of nervous system. Oxford University Press; 1928.
Morris JH, Hudson AR, Weddell G. Study of degeneration and regeneration in divided rat sciatic nerve based on electron-microscopy. 2. Development of regenerating unit. Z Zellforsch Mikrosk Anat. 1972;124:103–130. PubMed
Son YJ, Trachtenberg JT, Thompson WJ. Schwann cells induce and guide sprouting and reinnervation of neuromuscular junctions. TINS. 1996;19:280–285. PubMed
Vleggeert-Lankamp C, de Ruiter GCW, Wolfs JFC, Pego AP, Feirabend HKP, Lakke E, Malessy MJA. Type grouping in skeletal muscles after experimental reinnervation: another explanation. Eur J Neurosci. 2005;21:1249–1256. doi: 10.1111/j.1460-9568.2005.03954.x. PubMed DOI
Ito M, Kudo M. Reinnervation by axon collaterals from single facial motoneurons to multiple muscle targets following axotomy in the adult guinea-pig. Acta Anat. 1994;151:124–130. doi: 10.1159/000147653. PubMed DOI
Streppel M, Azzolin N, Dohm S, Guntinas-Lichius O, Haas C, Grothe C, Wevers A, Neiss WF, Angelov DN. Focal application of neutralizing antibodies to soluble neurotrophic factors reduces collateral axonal branching after peripheral nerve lesion. Eur J Neurosci. 2002;15:1327–1342. doi: 10.1046/j.1460-9568.2002.01971.x. PubMed DOI
Tam SL, Gordon T. Mechanisms controlling axonal sprouting at the neuromuscular junction. J Neurocytol. 2003;32:961–974. PubMed
Iannuzzelli PG, Murray M, Murphy EH. Regenerative axonal sprouting in the cat trochlear nerve. J Comp Neurol. 1995;354:229–240. doi: 10.1002/cne.903540206. PubMed DOI
Kuypers PDL, Vanegeraat JM, Godschalk M, Hovius SER. Loss of viable neuronal units in the proximal stump as possible cause for poor function recovery following nerve reconstructions. Exp Neurol. 1995;132:77–81. doi: 10.1016/0014-4886(95)90060-8. PubMed DOI
Newman JP, Verity AN, Hawatmeh S, Fee WE, Terris DJ. Ciliary neurotrophic factor enhances peripheral nerve regeneration. Arch Otolaryngol. 1996;122:399–403. PubMed
Helgren ME, Squinto SP, Davis HL, Parry DJ, Boulton TG, Heck CS, Zhu Y, Yancopoulos GD, Lindsay RM, DiStefano PS. Trophic effect of ciliary neurotrophic factor on denervated skeletal muscle. Cell. 1994;76:493–504. doi: 10.1016/0092-8674(94)90113-9. PubMed DOI
Rabinovsky ED, Smith GM, Browder DP, Shine HD, McManaman JL. Peripheral-nerve injury down-regulates CNTF expression in adult-rat sciatic-nerves. J Neurosci Res. 1992;31:188–192. doi: 10.1002/jnr.490310124. PubMed DOI
Ito Y, Yamamoto M, Li M, Doyu M, Tanaka F, Mutch T, Mitsuma T, Sobue G. Differential temporal expression of mRNAs for ciliary neurotrophic factor (CNTF), leukemia inhibitory factor (LIF), interleukin-6 (IL-6), and their receptors (CNTFRa alpha, LIFr beta, IL-6r alpha and gp130) in injured peripheral nerves. Brain Res. 1998;793:321–327. doi: 10.1016/S0006-8993(98)00242-X. PubMed DOI
Davis S, Yancopoulos GD. The molecular biology of the CNTF receptor. Curr Opin Cell Biol. 1993;5:281–285. doi: 10.1016/0955-0674(93)90117-9. PubMed DOI
Uschold T, Robinson GA, Madison RD. Motor neuron regeneration accuracy: balancing trophic influences between pathways and end-organs. Exp Neurol. 2007;205:250–256. doi: 10.1016/j.expneurol.2007.02.005. PubMed DOI
Valero-Cabre A, Navarro X. Changes in crossed spinal reflexes after peripheral nerve injury and repair. J Neurophysiol. 2002;87:1763–1771. PubMed
Haninec P, Dubovy P, Samal F, Houstava L, Stejskal L. End-to-side anastomosis of peripheral nerve in experimental and clinical model. Developments in Neuroscience. Proceedings of the 3rd International Mt. Bandai Symposium for Neuroscience and the 4th Pan-Pacific Neurosurgery Congress. Int Congr Ser. 2004;1259:471–477.
Haninec P, Samal F, Tomas R, Houstava L, Dubovy P. Direct repair (nerve grafting), neurotization, and end-to-side neurorrhaphy in the treatment of brachial plexus injury. J Neurosurg. 2007;106:391–399. doi: 10.3171/jns.2007.106.3.391. PubMed DOI
Bertelli JA, Mira JC. Behavioral evaluating methods in the objective clinical-assessment of motor function after experimental brachial-plexus reconstruction in the rat. J Neurosci Methods. 1993;46:203–208. doi: 10.1016/0165-0270(93)90068-3. PubMed DOI
Bertelli JA, Taleb M, Saadi A, Mira J-C, Pecot-Dechavassine M. The rat brachial plexus and its terminal branches: An experimental model for the study of peripheral nerve regeneration. Microsurgery. 1995;16:77–85. doi: 10.1002/micr.1920160207. PubMed DOI
Zamboni L, de Martino C. Buffered picric acid-formaldehyde: a new, rapid fixative for electron microscopy. J Cell Biol. 1967;35:148A.
Karnes J, Robb R, Obrien PC, Lambert EH, Dyck PJ. Computerized image recognition for morphometry of nerve attribute of shape of sampled transverse sections of myelinated fibers which best estimates their average diameter. J Neurol Sci. 1977;34:43–51. doi: 10.1016/0022-510X(77)90090-9. PubMed DOI
Auer RN. Automated nerve-fiber size and myelin sheath measurement using microcomputer-based digital image-analysis - theory, method and results. J Neurosci Meth. 1994;51:229–238. doi: 10.1016/0165-0270(94)90015-9. PubMed DOI