Production of lipopeptides among Bacillus strains showing growth inhibition of phytopathogenic fungi

. 2011 Jul ; 56 (4) : 297-303. [epub] 20110805

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid21818610

The biological activity and the presence of genes sfp and ituD (surfactin and iturin A) among Bacillus strains isolated from the Amazon basin were determined. Bacillus spp. were tested for hemolytic activity and inhibition of fungal growth by agar plate assays in parallel with PCR for identification of sfp and ituD genes. All strains tested produced surface-active compounds, giving evidence by lysis of erythrocytes and emulsifying activity on mineral oil and soybean oil. These strains of Bacillus caused growth inhibition of several phytopathogenic fungi, including Fusarium spp., Aspergillus spp., and Bipolaris sorokiniana. The presence of genes ituD and sfp was confirmed by PCR and sequence analysis. The only exception was Bacillus sp. P34 that lacks sfp gene. Lipopeptides were isolated from culture supernatants and analyzed by mass spectrometry. Characteristic m/z peaks for surfactin and iturin were observed, and some strains also produced fengycin and bacillomycin. The remarkable antifungal activity showed by the strains could be associated with the co-production of three or more lipopeptide antibiotics. Screening for novel bacteria producing useful biosurfactants or biocontrol agents for agriculture is a topic of greatest importance to eliminate chemical pollutants.

Zobrazit více v PubMed

J Biosci Bioeng. 2006 Sep;102(3):139-49 PubMed

J Colloid Interface Sci. 2005 Mar 15;283(2):358-65 PubMed

J Appl Microbiol. 2008 Mar;104(3):808-16 PubMed

FEMS Microbiol Lett. 2002 Sep 24;215(1):97-101 PubMed

Environ Pollut. 2005 Jan;133(2):183-98 PubMed

Enzyme Microb Technol. 2000 Dec;27(10):749-754 PubMed

Appl Microbiol Biotechnol. 1999 May;51(5):553-63 PubMed

Appl Microbiol Biotechnol. 2009 Jun;83(3):541-53 PubMed

Arch Microbiol. 2007 Oct;188(4):367-75 PubMed

Rapid Commun Mass Spectrom. 2008 Apr;22(8):1146-52 PubMed

J Bacteriol. 2001 Nov;183(21):6265-73 PubMed

Appl Environ Microbiol. 1981 Sep;42(3):408-12 PubMed

J Appl Microbiol. 2001 Apr;90(4):622-9 PubMed

Biotechnol Appl Biochem. 1990 Aug;12(4):370-5 PubMed

Nucleic Acids Res. 1994 Nov 11;22(22):4673-80 PubMed

J Biol Chem. 2007 Feb 23;282(8):5608-16 PubMed

J Appl Bacteriol. 1995 Feb;78(2):97-108 PubMed

Mol Microbiol. 2005 May;56(4):845-57 PubMed

Lett Appl Microbiol. 2004;38(4):251-6 PubMed

Curr Microbiol. 2003 Oct;47(4):272-7 PubMed

Trends Biotechnol. 2004 Mar;22(3):142-6 PubMed

J Appl Microbiol. 2008 Sep;105(3):663-73 PubMed

Phytochemistry. 2002 Nov;61(6):693-8 PubMed

J Appl Microbiol. 2004;97(6):1247-56 PubMed

Lett Appl Microbiol. 2008 Sep;47(3):180-6 PubMed

Curr Microbiol. 2008 Jan;56(1):1-5 PubMed

Int J Mol Sci. 2010 Nov 12;11(11):4526-38 PubMed

J Microbiol Biotechnol. 2010 Jan;20(1):138-45 PubMed

Curr Microbiol. 2004 Sep;49(3):186-91 PubMed

Mol Gen Genet. 1992 Mar;232(2):313-21 PubMed

J Gen Appl Microbiol. 2006 Dec;52(6):357-63 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace