Production of lipopeptides among Bacillus strains showing growth inhibition of phytopathogenic fungi
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- ACP-S-malonyltransferasa genetika MeSH
- antifungální látky metabolismus farmakologie MeSH
- Bacillus genetika metabolismus MeSH
- bakteriální proteiny genetika MeSH
- houby účinky léků růst a vývoj MeSH
- lipopeptidy metabolismus farmakologie MeSH
- povrchově aktivní látky metabolismus MeSH
- rostliny mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ACP-S-malonyltransferasa MeSH
- antifungální látky MeSH
- bakteriální proteiny MeSH
- lipopeptidy MeSH
- povrchově aktivní látky MeSH
The biological activity and the presence of genes sfp and ituD (surfactin and iturin A) among Bacillus strains isolated from the Amazon basin were determined. Bacillus spp. were tested for hemolytic activity and inhibition of fungal growth by agar plate assays in parallel with PCR for identification of sfp and ituD genes. All strains tested produced surface-active compounds, giving evidence by lysis of erythrocytes and emulsifying activity on mineral oil and soybean oil. These strains of Bacillus caused growth inhibition of several phytopathogenic fungi, including Fusarium spp., Aspergillus spp., and Bipolaris sorokiniana. The presence of genes ituD and sfp was confirmed by PCR and sequence analysis. The only exception was Bacillus sp. P34 that lacks sfp gene. Lipopeptides were isolated from culture supernatants and analyzed by mass spectrometry. Characteristic m/z peaks for surfactin and iturin were observed, and some strains also produced fengycin and bacillomycin. The remarkable antifungal activity showed by the strains could be associated with the co-production of three or more lipopeptide antibiotics. Screening for novel bacteria producing useful biosurfactants or biocontrol agents for agriculture is a topic of greatest importance to eliminate chemical pollutants.
Zobrazit více v PubMed
J Biosci Bioeng. 2006 Sep;102(3):139-49 PubMed
J Colloid Interface Sci. 2005 Mar 15;283(2):358-65 PubMed
J Appl Microbiol. 2008 Mar;104(3):808-16 PubMed
FEMS Microbiol Lett. 2002 Sep 24;215(1):97-101 PubMed
Environ Pollut. 2005 Jan;133(2):183-98 PubMed
Enzyme Microb Technol. 2000 Dec;27(10):749-754 PubMed
Appl Microbiol Biotechnol. 1999 May;51(5):553-63 PubMed
Appl Microbiol Biotechnol. 2009 Jun;83(3):541-53 PubMed
Arch Microbiol. 2007 Oct;188(4):367-75 PubMed
Rapid Commun Mass Spectrom. 2008 Apr;22(8):1146-52 PubMed
J Bacteriol. 2001 Nov;183(21):6265-73 PubMed
Appl Environ Microbiol. 1981 Sep;42(3):408-12 PubMed
J Appl Microbiol. 2001 Apr;90(4):622-9 PubMed
Biotechnol Appl Biochem. 1990 Aug;12(4):370-5 PubMed
Nucleic Acids Res. 1994 Nov 11;22(22):4673-80 PubMed
J Biol Chem. 2007 Feb 23;282(8):5608-16 PubMed
J Appl Bacteriol. 1995 Feb;78(2):97-108 PubMed
Mol Microbiol. 2005 May;56(4):845-57 PubMed
Lett Appl Microbiol. 2004;38(4):251-6 PubMed
Curr Microbiol. 2003 Oct;47(4):272-7 PubMed
Trends Biotechnol. 2004 Mar;22(3):142-6 PubMed
J Appl Microbiol. 2008 Sep;105(3):663-73 PubMed
Phytochemistry. 2002 Nov;61(6):693-8 PubMed
J Appl Microbiol. 2004;97(6):1247-56 PubMed
Lett Appl Microbiol. 2008 Sep;47(3):180-6 PubMed
Curr Microbiol. 2008 Jan;56(1):1-5 PubMed
Int J Mol Sci. 2010 Nov 12;11(11):4526-38 PubMed
J Microbiol Biotechnol. 2010 Jan;20(1):138-45 PubMed
Curr Microbiol. 2004 Sep;49(3):186-91 PubMed
Mol Gen Genet. 1992 Mar;232(2):313-21 PubMed
J Gen Appl Microbiol. 2006 Dec;52(6):357-63 PubMed