Phylogenetic analysis of urease-positive thermophilic Campylobacter (UPTC) strains based on the molecular characterization of the flaA gene
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Campylobacter lari classification genetics isolation & purification metabolism MeSH
- Campylobacter classification genetics isolation & purification metabolism MeSH
- Flagellin chemistry genetics metabolism MeSH
- Phylogeny MeSH
- Cloning, Molecular MeSH
- Bivalvia microbiology MeSH
- Molecular Sequence Data MeSH
- Seawater microbiology MeSH
- Open Reading Frames MeSH
- Polymerase Chain Reaction MeSH
- Recombinant Proteins chemistry genetics metabolism MeSH
- Amino Acid Sequence MeSH
- Sequence Analysis, DNA methods MeSH
- Sequence Alignment MeSH
- Urease metabolism MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- England MeSH
- Northern Ireland MeSH
- Names of Substances
- flaA protein, bacteria MeSH Browser
- Flagellin MeSH
- Recombinant Proteins MeSH
- Urease MeSH
Molecular cloning, nucleotide sequencing, and characterization of the flaA gene from additional isolates of urease-positive thermophilic Campylobacter (UPTC) were performed. These isolates were obtained from the natural environment in Northern Ireland (n = 9 from mussels) and in England (n = 1 from sea water). All isolates carried the shorter flaA gene, [open reading frames (ORFs), 1,461 to 1,503 base pairs], without any internal termination codons, and did not carry any flaA pseudogenes. The UPTC isolates were well discriminated by the neighbor joining (NJ) phylogenetic tree constructed based on the putative flaA genes ORFs nucleotide sequence information. In addition, the NJ tree constructed based on the flaA-short variable region sequence information discriminated the Campylobacter lari isolates with a similar degree of discrimination power.
See more in PubMed
J Biol Chem. 1990 Oct 15;265(29):17798-804 PubMed
J Clin Microbiol. 1993 Jun;31(6):1531-6 PubMed
Br J Biomed Sci. 2004;61(4):186-9 PubMed
Lett Appl Microbiol. 2002;35(3):185-9 PubMed
J Hyg (Lond). 1980 Dec;85(3):427-42 PubMed
Folia Microbiol (Praha). 2011 Mar;56(2):103-9 PubMed
Nucleic Acids Res. 1994 Nov 11;22(22):4673-80 PubMed
J Clin Microbiol. 2002 Mar;40(3):1053-5 PubMed
J Clin Microbiol. 1997 Sep;35(9):2386-92 PubMed
Antonie Van Leeuwenhoek. 2005 Aug;88(2):113-20 PubMed
Res Microbiol. 2004 Apr;155(3):185-91 PubMed
J Clin Microbiol. 1997 Nov;35(11):2810-4 PubMed
Lancet. 1985 May 25;1(8439):1217-8 PubMed
J Basic Microbiol. 2007 Feb;47(1):63-73 PubMed
Mol Biol Evol. 1987 Jul;4(4):406-25 PubMed
J Bacteriol. 1990 Apr;172(4):1853-60 PubMed
Folia Microbiol (Praha). 2006;51(3):183-90 PubMed
Ann Intern Med. 1984 Jul;101(1):55-7 PubMed
Appl Environ Microbiol. 2004 Aug;70(8):4415-8 PubMed
Appl Environ Microbiol. 2005 Oct;71(10):6368-74 PubMed