Charybdotoxin unbinding from the mKv1.3 potassium channel: a combined computational and experimental study
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
21877740
DOI
10.1021/jp2061909
Knihovny.cz E-zdroje
- MeSH
- charybdotoxin chemie metabolismus MeSH
- draslíkový kanál Kv1.3 chemie metabolismus MeSH
- hydrofobní a hydrofilní interakce MeSH
- metoda terčíkového zámku MeSH
- molekulární sekvence - údaje MeSH
- sekvence aminokyselin MeSH
- sekvenční seřazení MeSH
- simulace molekulární dynamiky MeSH
- statická elektřina MeSH
- terciární struktura proteinů MeSH
- termodynamika MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- charybdotoxin MeSH
- draslíkový kanál Kv1.3 MeSH
Charybdotoxin, belonging to the group of so-called scorpion toxins, is a short peptide able to block many voltage-gated potassium channels, such as mKv1.3, with high affinity. We use a reliable homology model based on the high-resolution crystal structure of the 94% sequence identical homologue Kv1.2 for charybdotoxin docking followed by molecular dynamics simulations to investigate the mechanism and energetics of unbinding, tracing the behavior of the channel protein and charybdotoxin during umbrella-sampling simulations as charybdotoxin is moved away from the binding site. The potential of mean force is constructed from the umbrella sampling simulations and combined with K(d) and free energy values gained experimentally using the patch-clamp technique to study the free energy of binding at different ion concentrations and the mechanism of the charybdotoxin-mKv1.3 binding process. A possible charybdotoxin binding mechanism is deduced that includes an initial hydrophobic contact followed by stepwise electrostatic interactions and finally optimization of hydrogen bonds and salt bridges.
Citace poskytuje Crossref.org
Scorpion toxins prefer salt solutions