Scorpion toxins prefer salt solutions
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26475740
DOI
10.1007/s00894-015-2822-y
PII: 10.1007/s00894-015-2822-y
Knihovny.cz E-zdroje
- Klíčová slova
- Ionic solutions, Molecular dynamics, Nonaqueous media, Secondary structure,
- MeSH
- blokátory draslíkových kanálů chemie MeSH
- molekulární sekvence - údaje MeSH
- počítačová simulace MeSH
- sekvence aminokyselin MeSH
- sekvenční seřazení MeSH
- štíří jedy chemie MeSH
- terciární struktura proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- blokátory draslíkových kanálů MeSH
- štíří jedy MeSH
There is a wide variety of ion channel types with various types of blockers, making research in this field very complicated. To reduce this complexity, it is essential to study ion channels and their blockers independently. Scorpion toxins, a major class of blockers, are charged short peptides with high affinities for potassium channels. Their high selectivity and inhibitory properties make them an important pharmacological tool for treating autoimmune or nervous system disorders. Scorpion toxins typically have highly charged surfaces and-like other proteins-an intrinsic ability to bind ions (Friedman J Phys Chem B 115(29):9213-9223, 1996; Baldwin Biophys J 71(4):2056-2063, 1996; Vrbka et al. Proc Natl Acad Sci USA 103(42):15440-15444, 2006a; Vrbka et al. J Phys Chem B 110(13):7036-43, 2006b). Thus, their effects on potassium channels are usually investigated in various ionic solutions. In this work, computer simulations of protein structures were performed to analyze the structural properties of the key residues (i.e., those that are presumably involved in contact with the surfaces of the ion channels) of 12 scorpion toxins. The presence of the two most physiologically abundant cations, Na(+) and K(+), was considered. The results indicated that the ion-binding properties of the toxin residues vary. Overall, all of the investigated toxins had more stable structures in ionic solutions than in water. We found that both the number and length of elements in the secondary structure varied depending on the ionic solution used (i.e., in the presence of NaCl or KCl). This study revealed that the ionic solution should be chosen carefully before performing experiments on these toxins. Similarly, the influence of these ions should be taken into consideration in the design of toxin-based pharmaceuticals.
Department of Biological Chemistry University of Michigan Ann Arbor MI 48109 USA
Zobrazit více v PubMed
Neuron. 1996 Feb;16(2):399-406 PubMed
Proteins. 1997 Nov;29(3):321-33 PubMed
Biophys J. 2001 Apr;80(4):1659-69 PubMed
Biochemistry. 2001 Sep 18;40(37):10998-1006 PubMed
PLoS One. 2012;7(10):e46388 PubMed
Curr Med Chem. 2004 Mar;11(5):595-605 PubMed
Biochemistry. 1994 Nov 29;33(47):14256-63 PubMed
Biochemistry. 2001 May 22;40(20):5942-53 PubMed
J Phys Chem B. 2011 Oct 6;115(39):11490-500 PubMed
Sci Rep. 2014 Mar 28;4:4509 PubMed
Biochem J. 2004 Jan 1;377(Pt 1):25-36 PubMed
Nature. 2006 Apr 13;440(7086):959-62 PubMed
Protein Sci. 1995 Aug;4(8):1478-89 PubMed
Biochim Biophys Acta. 2010 Apr;1804(4):821-8 PubMed
J Biol Chem. 2000 May 5;275(18):13605-12 PubMed
Biochemistry. 2001 Sep 18;40(37):10987-97 PubMed
Biophys J. 2012 Feb 22;102(4):907-15 PubMed
J Biomol Struct Dyn. 2012;29(4):815-24 PubMed
Biopolymers. 1983 Dec;22(12):2577-637 PubMed
Biophys J. 2004 Jun;86(6):3542-55 PubMed
Neuron. 1992 Aug;9(2):307-13 PubMed
Biophys J. 2011 Dec 7;101(11):2652-60 PubMed
J Phys Chem B. 2013 May 30;117(21):6394-402 PubMed
Neuron. 1994 Jun;12(6):1377-88 PubMed
J Phys Chem B. 2011 Jul 28;115(29):9213-23 PubMed
Biochem J. 2005 Jan 1;385(Pt 1):95-104 PubMed
Science. 1995 Apr 14;268(5208):307-10 PubMed
Proc Natl Acad Sci U S A. 1988 Jan;85(2):401-5 PubMed
J Pept Sci. 1997 Jul-Aug;3(4):314-9 PubMed
Biochem J. 2004 Jan 1;377(Pt 1):37-49 PubMed
Biophys J. 2000 Aug;79(2):776-87 PubMed
Nature. 2006 Mar 23;440(7083):440-7 PubMed
J Biol Chem. 2000 Dec 15;275(50):39345-53 PubMed
Toxicon. 2001 Jun;39(6):739-48 PubMed
FEBS Lett. 1998 Jun 16;429(3):381-4 PubMed
Biophys J. 2002 Nov;83(5):2370-85 PubMed
J Gen Physiol. 1988 Mar;91(3):317-33 PubMed
Biochim Biophys Acta. 2002 Oct 11;1565(2):294-307 PubMed
Biopolymers. 1991 Sep;31(10):1213-20 PubMed
Biochemistry. 1997 Mar 11;36(10):2763-71 PubMed
Eur J Biochem. 1999 Sep;264(2):287-300 PubMed
Structure. 1995 May 15;3(5):435-48 PubMed
Proteins. 1999 Mar 1;34(4):417-26 PubMed
Neuron. 1995 Nov;15(5):1169-81 PubMed
Toxins (Basel). 2012 Nov 01;4(11):1082-119 PubMed
Biochimie. 1998 Feb;80(2):151-4 PubMed
J Membr Biol. 2001 Jan 1;179(1):13-25 PubMed
Proc Natl Acad Sci U S A. 2008 May 13;105(19):6809-12 PubMed
Toxicon. 2003 Aug;42(2):199-205 PubMed
Biophys Chem. 2007 Jul;128(2-3):95-104 PubMed
J Phys Chem B. 2008 Sep 25;112(38):12073-80 PubMed
J Mol Graph. 1996 Feb;14(1):33-8, 27-8 PubMed
Biophys J. 2013 Oct 15;105(8):1829-37 PubMed
BMC Struct Biol. 2011 Jan 25;11:3 PubMed
PLoS One. 2008 Jun 04;3(6):e2359 PubMed
Biochimie. 2000 Sep-Oct;82(9-10):861-8 PubMed
J Toxicol. 2012;2012:103608 PubMed
Biophys J. 2000 May;78(5):2382-91 PubMed
J Phys Chem B. 2012 May 3;116(17):5132-40 PubMed
Biopolymers. 1985 Jun;24(6):1057-74 PubMed
Science. 1998 Apr 3;280(5360):69-77 PubMed
Biochemistry. 1992 Sep 1;31(34):7756-64 PubMed
Biochemistry. 1994 Dec 20;33(50):15061-70 PubMed
Biochemistry. 2004 Oct 5;43(39):12469-76 PubMed
J Gen Physiol. 2004 Mar;123(3):265-79 PubMed
Neuron. 1995 Jul;15(1):5-10 PubMed
Trends Pharmacol Sci. 2004 May;25(5):280-9 PubMed
Biochemistry. 1995 Dec 26;34(51):16563-73 PubMed
FEBS Lett. 2001 Sep 21;505(3):369-73 PubMed
FEBS Lett. 2003 Jan 30;535(1-3):29-33 PubMed
Protein Sci. 1999 Dec;8(12):2672-85 PubMed
Biophys J. 2003 Mar;84(3):1628-41 PubMed
Trends Pharmacol Sci. 1999 Nov;20(11):444-7 PubMed
Biochemistry. 1997 Feb 11;36(6):1223-32 PubMed
Biochemistry. 1994 Jan 18;33(2):443-50 PubMed
Indian J Med Res. 2009 Mar;129(3):223-32 PubMed