New pathophysiological concepts underlying pathogenesis of pigment gallstones
Language English Country France Media print-electronic
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Review
Grant support
R37 DK036588
NIDDK NIH HHS - United States
R37 DK036588-25
NIDDK NIH HHS - United States
R37DK36588
NIDDK NIH HHS - United States
PubMed
21978438
PubMed Central
PMC3311771
DOI
10.1016/j.clinre.2011.08.010
PII: S2210-7401(11)00282-8
Knihovny.cz E-resources
- MeSH
- Humans MeSH
- Gallstones etiology physiopathology MeSH
- Bile Pigments MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Bile Pigments MeSH
Pigment gallstones, which are much less frequent than cholesterol stones, are classified descriptively as "black" or "brown". They are composed mostly of calcium hydrogen bilirubinate, Ca(HUCB)(2), which is polymerized and oxidized in "black" stones but remains unpolymerized in "brown" stones. Black stones form in sterile gallbladder bile but brown stones form secondary to stasis and anaerobic bacterial infection in any part of the biliary tree, including the gallbladder. Other calcium salts coprecipitate in both stone types; crystalline calcium phosphate and/or carbonate in the case of "black" stones and amorphous calcium salts of long chain saturated fatty acids ("soaps") in the case of "brown" stones. Cholesterol is present in variable proportions in "brown" more than "black" stones and in the latter, the bile sterol may be totally absent. The "scaffolding" of both stone types is a mixed mucin glycoprotein matrix secreted by epithelial cells lining the biliary tree. The critical pathophysiological prerequisite for "black" stone formation is "hyperbilirubinbilia" (biliary hypersecretion of bilirubin conjugates). It is due principally to hemolysis, ineffective erythropoiesis, or pathologic enterohepatic cycling of unconjugated bilirubin. Endogenous biliary β-glucuronidase hydrolysis of bilirubin conjugates in gallbladder bile provides HUCB(-) molecules that precipitate as insoluble salts with ionized Ca. Putatively, reactive oxygen species secreted by an inflamed gallbladder mucosa are responsible for transforming the initial soft yellow precipitates into hard black [Ca(HUCB)(2)](n) polymers. Despite "brown" gallstones being soft and amenable to mechanical removal, chronic anaerobic infection of the biliary tree is often markedly resistant to eradication.
See more in PubMed
Schafmayer C, Hartleb J, Tepel J, Albers S, Freitag S, Völzke H, et al. Predictors of gallstone composition in 1025 symptomatic gallstones from Northern Germany. BMC Gastroenterol. 2006;6:36–44. PubMed PMC
Cahalane MJ, Neubrand MW, Carey MC. Physical-chemical pathogenesis of pigment gallstones. Semin Liver Dis. 1988;8:317–328. PubMed
Suzuki N, Nakamura Y, Kobayashi N, Sato T. On metal elements in pure pigment gallstones. Tohoku J Exp Med. 1975;116:233–240. PubMed
Tsunoda K, Shirai Y, Wakai T, Yokoyama N, Akazawa K, Hatakeyama K. Increased risk of cholelithiasis after esophagectomy. J Hepatobiliary Pancreat Surg. 2004;11:319–323. PubMed
Strauss KA, Robinson DL, Vreman HJ, Puffenberger EG, Hart G, Morton DH. Management of hyperbilirubinemia and prevention of kernicterus in 20 patients with Crigler-Najjar disease. Eur J Pediatr. 2006;165:306–319. PubMed
Pavel S, Thijs CT, Potocky V, Knipschild PG. Fair, and still a sun lover: risk of gallstone formation. J Epidemiol Community Health. 1992;46:425–427. PubMed PMC
Lund HT, Jacobsen J. Influence of phototherapy on unconjugated bilirubin in duodenal bile of newborn infants with hyperbilirubinemia. Acta Paediatr Scand. 1972;61:693–696. PubMed
Agati G, Fusi F, Pratesi S, Galvan P, Donzelli GP. Bilirubin photoisomerization products in serum and urine from a Crigler—Najjar type I patient treated by phototherapy. J Photochem Photobiol B. 1998;47:181–189. PubMed
Wolkoff AW, Chowdhury JR, Gartner LA, Rose AL, Biempica L, Giblin DR, et al. Crigler-Najjar syndrome (Type 1) in an adult male. Gastroenterology. 1979;76:840–848. PubMed
Ostrow JD. Photocatabolism of labeled bilirubin in the congenitally jaundiced (Gunn) rat. J Clin Invest. 1971;50:707–718. PubMed PMC
Onishi S, Itoh S, Isobe K, Togari H, Kitoh H, Nishimura Y. Mechanism of development of bronze baby syndrome in neonates treated with phototherapy. Pediatrics. 1982;69:273–276. PubMed
Robins SJ, Fasulo JM, Patton GM. Lipids of pigment gallstones. Biochim Biophys Acta. 1982;712:21–25. PubMed
Kaufman HS, Magnuson TH, Lillemoe KD, Frasca P, Pitt HA. The role of bacteria in gallbladder and common duct stone formation. Ann Surg. 1989;209:584–591. PubMed PMC
Rana SS, Bhasin DK, Nanda M, Singh K. Parasitic infestations of the biliary tract. Curr Gastroenterol Rep. 2007;9:156–164. PubMed
Stewart L, Smith AL, Pellegrini CA, Motson RW, Way LW. Pigment gallstones form as a composite of bacterial microcolonies and pigment solids. Ann Surg. 1987;206:242–250. PubMed PMC
Sauerbruch J, Stellaard F, Soehendra N, Paumgartner G. Cholesterol content of bile-duct stones. Dtsch Med Wochenschr. 1983;108:99–102. PubMed
Sandstad O, Osnes T, Skar V, Urdal P, Osnes M. Common bile duct stones are mainly brown and associated with duodenal diverticula. Gut. 1994;35:1464–1467. PubMed PMC
Jang JS, Kim KH, Yu JR, Lee SU. Identification of parasite DNA in common bile duct stones by PCR and DNA sequencing. Korean J Parasitol. 2007;45:301–306. PubMed PMC
Sripa B, Kanla P, Sinawat P, Haswell-Elkins MR. Opisthorchiasis-associated biliary stones: light and scanning electron microscopic study. World J Gastroenterol. 2004;10:3318–3321. PubMed PMC
Akiyoshi T, Nakayama F. Bile acid composition in brown pigment stones. Dig Dis Sci. 1990;35:27–32. PubMed
Gu JJ, Hofmann AF, Ton-Nu HT, Schteingart CD, Mysels KJ. Solubility of calcium salts of unconjugated and conjugated natural bile acids. J Lipid Res. 1992;33:635–646. PubMed
Nakanuma Y, Terada T, Nagakawa T, Kakita A, Yoshikawa T, Ohta G, et al. Pathology of hepatolithiasis associated with biliary malformation in Japan. Liver. 1988;8:287–292. PubMed
del Giudice EM, Perrotta S, Nobili B, Specchia C, d'Urzo G, Iolascon A. Coinheritance of Gilbert syndrome increases the risk for developing gallstones in patients with hereditary spherocytosis. Blood. 1999;94:2259–2262. PubMed
Chaar V, Kéclard L, Diara JP, Leturdu C, Elion J, Krishnamoorthy R, et al. Association of UGT1A1 polymorphism with prevalence and age at onset of cholelithiasis in sickle cell anemia. Haematologica. 2005;90:188–199. PubMed
Premawardhena A, Fisher CA, Fathiu F, de Silva S, Perera W, Peto TEA, et al. Genetic determinants of jaundice and gallstones in haemoglobin E beta thalassaemia. Lancet. 2001;357:1945–1946. PubMed
Azemoto R, Tsuchiya Y, Ai T, Murayama H, Nakagawa Y, Saisho H, et al. Does gallstone formation after open cardiac surgery result only from latent hemolysis by replaced valves? Am J Gastroenterol. 1996;91:2185–2189. PubMed
Chawla LS, Sidhu G, Sabharwal BD, Bhatia KL, Sood A. Jaundice in Plasmodium falciparum malaria. J Assoc Physicians India. 1989;37:390–391. PubMed
Diehl AK, Schwesinger WH, Holleman DR, Jr, Chapman JB, Kurtin WE. Clinical correlates of gallstone composition: distinguishing pigment from cholesterol stones. Am J Gastroenterol. 1995;90:967–972. PubMed
Weight LM, Byrne MJ, Jacobs P. Haemolytic effects of exercise. Clin Sci (Lond) 1991;81:147–152. PubMed
Aydogdu I, Sari R, Ulu R, Sevinc A. The frequency of gallbladder stones in patients with pernicious anemia. J Surg Res. 2001;101:120–123. PubMed
Buch S, Schafmayer C, Völzke H, Seeger M, Miquel JF, Sookoian SC, et al. Loci from a genome-wide analysis of bilirubin levels are associated with gallstone risk and composition. Gastroenterology. 2010;139:1942–1951. PubMed
Broulik PD, Haas T, Adámek S. Analysis of 645 patients with primary hyperparathyroidism with special references to cholelithiasis. Intern Med. 2005;44:917–921. PubMed
Vítek L, Carey MC. Enterohepatic cycling of bilirubin as a cause of 'black' pigment gallstones in adult life. Eur J Clin Invest. 2003;33:799–810. PubMed
Wang L, Shen W, Wen J, An X, Cao L, Wang B. An animal model of black pigment gallstones caused by nanobacteria. Dig Dis Sci. 2006;51:1126–1132. PubMed
Shiekh FA, Khullar M, Singh SK. Lithogenesis: induction of renal calcifications by nanobacteria. Urol Res. 2006;34:53–57. PubMed
Ostrow JD, Mukerjee P. Revalidation and rationale for high pK'a values of unconjugated bilirubin. BMC Biochem. 2007;8:7. PubMed PMC
Ostrow JD, Pascolo L, Brites D, Tiribelli C. Molecular basis of bilirubin-induced neurotoxicity. Trends Mol Med. 2004;10:65–70. PubMed
Ostrow JD, Celic L. Bilirubin chemistry, ionization and solubilization by bile salts. Hepatology. 1984;4:38S–45S. PubMed
Ostrow JD, Murphy NH. Isolation and properties of conjugated bilirubin from bile. Biochem J. 1970;120:311–327. PubMed PMC
Ostrow JD, Celic L, Mukerjee P. Molecular and micellar associations in the pH-dependent stable and metastable dissolution of unconjugated bilirubin by bile salts. J Lipid Res. 1988;29:335–348. PubMed
Smith BF, Lamont JT. Bovine gallbladder mucin binds bilirubin in vitro. Gastroenterology. 1983;85:707–712. PubMed
McDonagh AF, Lightner DA. Phototherapy and the photobiology of bilirubin. Semin Liver Dis. 1988;8:272–283. PubMed
Goresky CA, Gordon ER, Hinchey EJ, Fried GM. Bilirubin conjugate changes in the bile of gallbladders containing gallstones. Hepatology. 1995;21:373–382. PubMed
Boonyapisit ST, Trotman BW, Ostrow JD. Unconjugated bilirubin, and the hydrolysis of conjugated bilirubin, in gallbladder bile of patients with cholelithiasis. Gastroenterology. 1978;74:70–74. PubMed
Whiting JF, Narcisco JP, Chapman V, Ransil BJ, Swank RT, Gollan JL. Deconjugation of bilirubin-IX alpha glucuronides: a physiologic role of hepatic microsomal beta-glucuronidase. J Biol Chem. 1993;268:23197–23201. PubMed
Spivak W, DiVenuto D, Yuey W. Non-enzymic hydrolysis of bilirubin mono- and diglucuronide to unconjugated bilirubin in model and native bile systems. Potential role in the formation of gallstones. Biochem J. 1987;242:323–329. PubMed PMC
Donovan JM, Carey MC. Physical-chemical basis of gallstone formation. Gastroenterol Clin North Am. 1991;20:47–66. PubMed
Ostrow JD. Unconjugated bilirubin and cholesterol gallstone formation. Hepatology. 1990;12:219S–226S. PubMed
Malet PF, Williamson CE, Trotman BW, Soloway RD. Composition of pigmented centers of cholesterol gallstones. Hepatology. 1986;6:477–481. PubMed
Lamont JT, Ventola AS, Trotman BW, Soloway RD. Mucin glycoprotein content of human pigment gallstones. Hepatology. 1983;3:377–382. PubMed
Lamont JT, Turner BS, Bernstein SE, Trotman B. Gallbladder glycoprotein secretion in mice with hemolytic anemia and pigment gallstones. Hepatology. 1983;3:198–200. PubMed
Imano M, Satou T, Itoh T, Takeyama Y, Yasuda A, Peng YF, et al. An immunohistochemical study of osteopontin in pigment gallstone formation. Am Surg. 2010;76:91–95. PubMed
Brink MA, Méndez Sánchez N, Carey MC. Bilirubin cycles enterohepatically after ileal resection in the rat. Gastroenterology. 1996;110:1945–1957. PubMed
Freudenberg F, Broderick AL, Yu BB, Leonard MR, Glickman JN, Carey MC. Pathophysiological basis of liver disease in cystic fibrosis employing a {Delta}F508 mouse model. Am J Physiol Gastrointest Liver Physiol. 2008;294:G1411–G1420. PubMed PMC
Donovan JM, Leonard MR, Batta AK, Carey MC. Calcium affinity for biliary lipid aggregates in model biles: complementary importance of bile salts and lecithin. Gastroenterology. 1994;107:831–846. PubMed
Chadwick VS, Modha K, Dowling RH. Mechanism for hyperoxaluria in patients with ileal dysfunction. N Engl J Med. 1973;289:172–176. PubMed
Verkade HJ, Havinga R, Kuipers F, Vonk RJ. Mechanism of biliary lipid secretion. In: Hofmann AF, Paumgartner G, Stiehl A, editors. Bile Acids in Gastroenterology: Basic and Clinical Advances. Dordrecht: Kluwer Academic Publishers; 1995. pp. 230–246.
Apstein MD, Dalecki-Chipperfield K. Spinal cord injury is a risk factor for gallstone disease. Gastroenterology. 1987;92:966–968. PubMed
Abadie C, Hug M, Kübli C, Gains N. Effect of cyclodextrins and undigested starch on the loss of chenodeoxycholate in the faeces. Biochem J. 1994;299:725–730. PubMed PMC
Kruis W, Forstmaier G, Scheurlen C, Stellaard F. Effect of diets low and high in refined sugars on gut transit, bile acid metabolism, and bacterial fermentation. Gut. 1991;32:367–371. PubMed PMC
Laker MF, Menzies IS. Increase in human intestinal permeability following ingestion of hypertonic solutions. J Physiol. 1977;265:881–894. PubMed PMC
Conter RL, Roslyn JJ, Pitt HA, DenBesten L. Carbohydrate diet-induced calcium bilirubinate sludge and pigment gallstones in the prairie dog. J Surg Res. 1986;40:580–587. PubMed
Holzbach RT. Animal models of cholesterol gallstone disease. Hepatology. 1984;4:191S–198S. PubMed
Parekh D, Lawson HH, Kuyl JM. Gallstone disease among black South Africans. S Afr Med J. 1987;72:23–26. PubMed
Rahman GA. Cholelithiasis and cholecystitis: changing prevalence in an African Community. J Natl Med Assoc. 2005;97:1534–1538. PubMed PMC
Cummings JH, Southgate DA, Branch WJ, Wiggins HS, Houston H, Jenkins DJ, et al. The digestion of pectin in the human gut and its effect on calcium absorption and large bowel function. Br J Nutr. 1979;41:477–485. PubMed
Walters RL, Baird IM, Davies PS, Hill MJ, Drasar BS, Southgate DA, et al. Effects of two types of dietary fibre on faecal steroid and lipid excretion. Br Med J. 1975;2:536–538. PubMed PMC
Fujisawa T, Mori M. Influence of bile salts on beta-glucuronidase activity of intestinal bacteria. Lett Appl Microbiol. 1996;22:271–274. PubMed
Nagase M, Hikasa Y, Soloway RD, Tanimura H, Setoyama M, Kato H. Gallstones in Western Japan. Factors affecting the prevalence of intrahepatic gallstones. Gastroenterology. 1980;78:684–690. PubMed
Fan Y, Wu SD, Sun L, Fu BB, Su Y. Possible relationship between intestinal barrier function and formation of pigment gallstones in hamsters. Hepatobiliary Pancreat Dis Int. 2008;7:529–532. PubMed
Su Y, Wu S, Fan Y, Jin J, Zhang Z. The preliminary experimental and clinical study of the relationship between the pigment gallstone and intestinal mucosal barrier. J Gastroenterol Hepatol. 2009;24:1451–1456. PubMed
Whary MT, Woods SE, Muthupalani S, Fox JG. Pigment gallstones in germfree Swiss Webster mice. Gastroenterology. 2010;138 Suppl 1:S211.
Vítek L, Kotal P, Jirsa M, Malina J, Cerná M, Chmelar D, et al. Intestinal colonization leading to fecal urobilinoid excretion may play a role in the pathogenesis of neonatal jaundice. J Pediatr Gastroenterol Nutr. 2000;30:294–298. PubMed
Vítek L, Zelenka J, Zadinová M, Malina J. The impact of intestinal microflora on serum bilirubin levels. J Hepatol. 2005;42:238–243. PubMed
Leonard MR, Andrade JD, Whary MT, Fox JG, Carey MC. Striking alterations in bilirubin and bile salt solution chemistry of gallbladder bile in a germ-free mouse model of "black" pigment gallstones. Gastroenterology. 2011;140 Suppl 1:S68.
Quintana FJ, Basso AS, Iglesias AH, Korn T, Farez MF, Bettelli E, et al. Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. Nature. 2008;453:65–71. PubMed
Haigh WG, Lee SP. Identification of oxysterols in human bile and pigment gallstones. Gastroenterology. 2001;121:118–123. PubMed
Liu XT, Hu J. Relationship between bilirubin free radical and formation of pigment gallstone. World J Gastroenterol. 2002;8:413–417. PubMed PMC
Shiesh SC, Chen CY, Lin XZ, Liu ZA, Tsao HC. Melatonin prevents pigment gallstone formation induced by bile duct ligation in guinea pigs. Hepatology. 2000;32:455–460. PubMed
Christian JS, Rege RV. Methionine, but not taurine, protects against formation of canine pigment gallstones. J Surg Res. 1996;61:275–281. PubMed
Braganza JM, Worthington H. A radical view of gallstone aetiogenesis. Med Hypotheses. 1995;45:510–516. PubMed
Baig SJ, Biswas S, Das S, Basu K, Chattopadhyay G. Histopathological changes in gallbladder mucosa in cholelithiasis: correlation with chemical composition of gallstones. Trop Gastroenterol. 2002;23:25–27. PubMed