Evidence for widespread infection of African bats with Crimean-Congo hemorrhagic fever-like viruses
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27217069
PubMed Central
PMC4877572
DOI
10.1038/srep26637
PII: srep26637
Knihovny.cz E-zdroje
- MeSH
- Chiroptera * krev virologie MeSH
- hemoragická horečka krymská * krev epidemiologie MeSH
- lidé MeSH
- virus krymsko-konžské hemoragické horečky * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Německo epidemiologie MeSH
- Panama epidemiologie MeSH
- střední Afrika epidemiologie MeSH
Crimean Congo hemorrhagic fever virus (CCHFV) is a highly virulent tick-borne pathogen that causes hemorrhagic fever in humans. The geographic range of human CCHF cases largely reflects the presence of ticks. However, highly similar CCHFV lineages occur in geographically distant regions. Tick-infested migratory birds have been suggested, but not confirmed, to contribute to the dispersal. Bats have recently been shown to carry nairoviruses distinct from CCHFV. In order to assess the presence of CCHFV in a wide range of bat species over a wide geographic range, we analyzed 1,135 sera from 16 different bat species collected in Congo, Gabon, Ghana, Germany, and Panama. Using a CCHFV glycoprotein-based indirect immunofluorescence test (IIFT), we identified reactive antibodies in 10.0% (114/1,135) of tested bats, pertaining to 12/16 tested species. Depending on the species, 3.6%-42.9% of cave-dwelling bats and 0.6%-7.1% of foliage-living bats were seropositive (two-tailed t-test, p = 0.0447 cave versus foliage). 11/30 IIFT-reactive sera from 10 different African bat species had neutralizing activity in a virus-like particle assay. Neutralization of full CCHFV was confirmed in 5 of 7 sera. Widespread infection of cave-dwelling bats may indicate a role for bats in the life cycle and geographic dispersal of CCHFV.
Bernhard Nocht Institute for Tropical Medicine Hamburg Germany
Centre International de Recherches Médicales de Franceville Franceville Gabon
German Centre for Infection Research Partner Site Bonn Cologne Bonn Germany
Institut de Recherche pour le Développement Montpellier France
Institute for Virology FB10 Veterinary Medicine Justus Liebig University Giessen Germany
Institute of Vertebrate Biology Academy of Sciences of the Czech Republic Brno Czech Republic
Kwame Nkrumah University of Science and Technology Kumasi Ghana
Smithsonian Tropical Research Institute Balboa Panama
University of Bonn Medical Centre Bonn Germany
University of Marburg Institute for Virology Marburg Germany
Zobrazit více v PubMed
Ergonul O. Crimean-Congo haemorrhagic fever. Lancet Infect Dis 6, 203–214, doi: 10.1016/S1473-3099(06)70435-2 (2006). PubMed DOI PMC
Bente D. A. et al.. Crimean-Congo hemorrhagic fever: history, epidemiology, pathogenesis, clinical syndrome and genetic diversity. Antiviral Res 100, 159–189, doi: 10.1016/j.antiviral.2013.07.006 (2013). PubMed DOI
Swanepoel R. et al.. Crimean-Congo hemorrhagic fever in South Africa. Am J Trop Med Hyg 32, 1407–1415 (1983). PubMed
Shepherd A. J. et al.. A nosocomial outbreak of Crimean-Congo haemorrhagic fever at Tygerberg Hospital. Part V. Virological and serological observations. S Afr Med J 68, 733–736 (1985). PubMed
Causey O. R., Kemp G. E., Madbouly M. H. & David-West T. S. Congo virus from domestic livestock, African hedgehog, and arthropods in Nigeria. Am J Trop Med Hyg 19, 846–850 (1970). PubMed
Shepherd A. J., Swanepoel R., Shepherd S. P., McGillivray G. M. & Searle L. A. Antibody to Crimean-Congo hemorrhagic fever virus in wild mammals from southern Africa. Am J Trop Med Hyg 36, 133–142 (1987). PubMed
Walker P. J. et al.. Genomic Characterization of Yogue, Kasokero, Issyk-Kul, Keterah, Gossas, and Thiafora Viruses: Nairoviruses Naturally Infecting Bats, Shrews, and Ticks. Am J Trop Med Hyg, doi: 10.4269/ajtmh.15-0344 (2015). PubMed DOI PMC
Shepherd A. J., Swanepoel R., Cornel A. J. & Mathee O. Experimental studies on the replication and transmission of Crimean-Congo hemorrhagic fever virus in some African tick species. Am J Trop Med Hyg 40, 326–331 (1989). PubMed
Mild M., Simon M., Albert J. & Mirazimi A. Towards an understanding of the migration of Crimean-Congo hemorrhagic fever virus. J Gen Virol 91, 199–207, doi: 10.1099/vir.0.014878-0 (2010). PubMed DOI
Leblebicioglu H. et al.. Role of migratory birds in spreading Crimean-Congo hemorrhagic fever, Turkey. Emerg Infect Dis 20, 1331–1334, doi: 10.3201/eid2008.131547 (2014). PubMed DOI PMC
Lindeborg M. et al.. Migratory birds, ticks, and Crimean-Congo hemorrhagic fever virus. Emerg Infect Dis 18, 2095–2097, doi: 10.3201/eid1812.120718 (2012). PubMed DOI PMC
Klompen J. S., Black W. C. t., Keirans J. E. & Oliver J. H. Jr. Evolution of ticks. Annual review of entomology 41, 141–161, doi: 10.1146/annurev.en.41.010196.001041 (1996). PubMed DOI
Arthur D. R. The Ixodes ticks of Chiroptera (Ixodoidea, Ixodidae). J Parasitol 42, 180–196 (1956). PubMed
Dacheux L. et al.. A preliminary study of viral metagenomics of French bat species in contact with humans: identification of new mammalian viruses. PLoS One 9, e87194, doi: 10.1371/journal.pone.0087194 (2014). PubMed DOI PMC
Ishii A. et al.. A nairovirus isolated from African bats causes haemorrhagic gastroenteritis and severe hepatic disease in mice. Nat Commun 5, 5651, doi: 10.1038/ncomms6651 (2014). PubMed DOI PMC
Calisher C. H., Childs J. E., Field H. E., Holmes K. V. & Schountz T. Bats: important reservoir hosts of emerging viruses. Clin Microbiol Rev 19, 531–545, doi: 10.1128/CMR.00017-06 (2006). PubMed DOI PMC
Drexler J. F. et al.. Evidence for novel hepaciviruses in rodents. PLoS Pathog 9, e1003438, doi: 10.1371/journal.ppat.1003438 (2013). PubMed DOI PMC
Drexler J. F. et al.. Bats host major mammalian paramyxoviruses. Nat Commun 3, 796, doi: 10.1038/ncomms1796 (2012). PubMed DOI PMC
Drexler J. F. et al.. Bats carry pathogenic hepadnaviruses antigenically related to hepatitis B virus and capable of infecting human hepatocytes. Proc Natl Acad Sci USA 110, 16151–16156, doi: 10.1073/pnas.1308049110 (2013). PubMed DOI PMC
Drexler J. F. et al.. Bats worldwide carry hepatitis E virus-related viruses that form a putative novel genus within the family Hepeviridae. J Virol 86, 9134–9147, doi: 10.1128/JVI.00800-12 (2012). PubMed DOI PMC
Towner J. S. et al.. Marburg virus infection detected in a common African bat. PLoS One 2, e764, doi: 10.1371/journal.pone.0000764 (2007). PubMed DOI PMC
Negredo A. et al.. Discovery of an ebolavirus-like filovirus in europe. PLoS Pathog 7, e1002304, doi: 10.1371/journal.ppat.1002304 (2011). PubMed DOI PMC
Leroy E. M. et al.. Fruit bats as reservoirs of Ebola virus. Nature 438, 575–576, doi: 10.1038/438575a (2005). PubMed DOI
Weiss S. et al.. Hantavirus in bat, Sierra Leone. Emerg Infect Dis 18, 159–161, doi: 10.3201/eid1801.111026 (2012). PubMed DOI PMC
Guo W. P. et al.. Phylogeny and origins of hantaviruses harbored by bats, insectivores, and rodents. PLoS Pathog 9, e1003159, doi: 10.1371/journal.ppat.1003159 (2013). PubMed DOI PMC
Xu G. J. et al.. Viral immunology. Comprehensive serological profiling of human populations using a synthetic human virome. Science 348, aaa0698, doi: 10.1126/science.aaa0698 (2015). PubMed DOI PMC
Devignot S., Bergeron E., Nichol S., Mirazimi A. & Weber F. A virus-like particle system identifies the endonuclease domain of Crimean-Congo hemorrhagic fever virus. J Virol 89, 5957–5967, doi: 10.1128/JVI.03691-14 (2015). PubMed DOI PMC
Honig J. E., Osborne J. C. & Nichol S. T. The high genetic variation of viruses of the genus Nairovirus reflects the diversity of their predominant tick hosts. Virology 318, 10–16, doi: 10.1016/j.virol.2003.09.021 (2004). PubMed DOI
Lambert A. J. & Lanciotti R. S. Consensus amplification and novel multiplex sequencing method for S segment species identification of 47 viruses of the Orthobunyavirus, Phlebovirus, and Nairovirus genera of the family Bunyaviridae. J Clin Microbiol 47, 2398–2404, doi: 10.1128/JCM.00182-09 (2009). PubMed DOI PMC
Wolfel R. et al.. Low-density macroarray for rapid detection and identification of Crimean-Congo hemorrhagic fever virus. J Clin Microbiol 47, 1025–1030, doi: 10.1128/JCM.01920-08 (2009). PubMed DOI PMC
Davies F. G., Casals J., Jesset D. M. & Ochieng P. The serological relationships of Nairobi sheep disease virus. J Comp Pathol 88, 519–523 (1978). PubMed
Habjan M. et al.. Efficient production of Rift Valley fever virus-like particles: The antiviral protein MxA can inhibit primary transcription of bunyaviruses. Virology 385, 400–408, doi: 10.1016/j.virol.2008.12.011 (2009). PubMed DOI
Atkinson B. et al.. Development of a real-time RT-PCR assay for the detection of Crimean-Congo hemorrhagic fever virus. Vector Borne Zoonotic Dis 12, 786–793, doi: 10.1089/vbz.2011.0770 (2012). PubMed DOI
Jaaskelainen A. J. et al.. Development and evaluation of a real-time RT-qPCR for detection of Crimean-Congo hemorrhagic fever virus representing different genotypes. Vector Borne Zoonotic Dis 14, 870–872, doi: 10.1089/vbz.2014.1577 (2014). PubMed DOI PMC
Drosten C. et al.. Rapid detection and quantification of RNA of Ebola and Marburg viruses, Lassa virus, Crimean-Congo hemorrhagic fever virus, Rift Valley fever virus, dengue virus, and yellow fever virus by real-time reverse transcription-PCR. J Clin Microbiol 40, 2323–2330 (2002). PubMed PMC
Wolfel R. et al.. Virus detection and monitoring of viral load in Crimean-Congo hemorrhagic fever virus patients. Emerg Infect Dis 13, 1097–1100, doi: 10.3201/eid1307.070068 (2007). PubMed DOI PMC
Cevik M. A. et al.. Viral load as a predictor of outcome in Crimean-Congo hemorrhagic fever. Clin Infect Dis 45, e96–100, doi: 10.1086/521244 (2007). PubMed DOI
Shepherd A. J., Swanepoel R., Leman P. A. & Shepherd S. P. Field and laboratory investigation of Crimean-Congo haemorrhagic fever virus (Nairovirus, family Bunyaviridae) infection in birds. Transactions of the Royal Society of Tropical Medicine and Hygiene 81, 1004–1007 (1987). PubMed
Zeller H. G., Cornet J. P. & Camicas J. L. Experimental transmission of Crimean-Congo hemorrhagic fever virus by west African wild ground-feeding birds to Hyalomma marginatum rufipes ticks. Am J Trop Med Hyg 50, 676–681 (1994). PubMed
Maganga G. D. et al.. Bat distribution size or shape as determinant of viral richness in african bats. PLoS One 9, e100172, doi: 10.1371/journal.pone.0100172 (2014). PubMed DOI PMC
Maganga G. D. et al.. Identification of an unclassified paramyxovirus in Coleura afra: a potential case of host specificity. PLoS One 9, e115588, doi: 10.1371/journal.pone.0115588 (2014). PubMed DOI PMC
Bishop D. H. et al.. Bunyaviridae. Intervirology 14, 125–143 (1980). PubMed
Casals J. & Tignor G. H. The Nairovirus genus: serological relationships. Intervirology 14, 144–147 (1980). PubMed
Zeller H. G. et al.. Electron microscopic and antigenic studies of uncharacterized viruses. II. Evidence suggesting the placement of viruses in the family Bunyaviridae. Arch Virol 108, 211–227 (1989). PubMed
Davies F. G., Jessett D. M. & Otieno S. The antibody response of sheep following infection with Nairobi sheep disease virus. J Comp Pathol 86, 497–502 (1976). PubMed
Dowall S. D. et al.. Hazara virus infection is lethal for adult type I interferon receptor-knockout mice and may act as a surrogate for infection with the human-pathogenic Crimean-Congo hemorrhagic fever virus. J Gen Virol 93, 560–564, doi: 10.1099/vir.0.038455-0 (2012). PubMed DOI
Shepherd A. J., Leman P. A. & Swanepoel R. Viremia and antibody response of small African and laboratory animals to Crimean-Congo hemorrhagic fever virus infection. Am J Trop Med Hyg 40, 541–547 (1989). PubMed
Burt F. J., Leman P. A., Abbott J. C. & Swanepoel R. Serodiagnosis of Crimean-Congo haemorrhagic fever. Epidemiol Infect 113, 551–562 (1994). PubMed PMC
Sevcik M., Kristofik J., Uhrin M. & Benda P. New records of ticks (Acari: Ixodidae) parasiting on bats in Slovakia. Vespertilio 13–14, 139–147 (2010).
Oba M. et al.. A novel Bunyavirus from the soft tick, Argas vespertilionis, in Japan. The Journal of veterinary medical science/the Japanese Society of Veterinary Science, doi: 10.1292/jvms.15-0536 (2015). PubMed DOI PMC
Telmadarraiy Z. et al.. A survey of Crimean-Congo haemorrhagic fever in livestock and ticks in Ardabil Province, Iran during 2004–2005. Scandinavian journal of infectious diseases 42, 137–141, doi: 10.3109/00365540903362501 (2010). PubMed DOI
Tahmasebi F. et al.. Molecular epidemiology of Crimean-Congo hemorrhagic fever virus genome isolated from ticks of Hamadan province of Iran. Journal of vector borne diseases 47, 211–216 (2010). PubMed
Vial L. Biological and ecological characteristics of soft ticks (Ixodida: Argasidae) and their impact for predicting tick and associated disease distribution. Parasite 16, 191–202 (2009). PubMed
Muller M. A. et al.. Coronavirus antibodies in African bat species. Emerg Infect Dis 13, 1367–1370, doi: 10.3201/eid1309.070342 (2007). PubMed DOI PMC