Bat distribution size or shape as determinant of viral richness in african bats
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24959855
PubMed Central
PMC4069033
DOI
10.1371/journal.pone.0100172
PII: PONE-D-13-33069
Knihovny.cz E-zdroje
- MeSH
- biodiverzita * MeSH
- Chiroptera klasifikace virologie MeSH
- cytochromy b genetika MeSH
- fylogeneze MeSH
- hustota populace MeSH
- objevující se infekční nemoci přenos MeSH
- populační dynamika MeSH
- viry izolace a purifikace MeSH
- zdroje nemoci veterinární MeSH
- zeměpis MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Afrika MeSH
- Názvy látek
- cytochromy b MeSH
The rising incidence of emerging infectious diseases (EID) is mostly linked to biodiversity loss, changes in habitat use and increasing habitat fragmentation. Bats are linked to a growing number of EID but few studies have explored the factors of viral richness in bats. These may have implications for role of bats as potential reservoirs. We investigated the determinants of viral richness in 15 species of African bats (8 Pteropodidae and 7 microchiroptera) in Central and West Africa for which we provide new information on virus infection and bat phylogeny. We performed the first comparative analysis testing the correlation of the fragmented geographical distribution (defined as the perimeter to area ratio) with viral richness in bats. Because of their potential effect, sampling effort, host body weight, ecological and behavioural traits such as roosting behaviour, migration and geographical range, were included into the analysis as variables. The results showed that the geographical distribution size, shape and host body weight have significant effects on viral richness in bats. Viral richness was higher in large-bodied bats which had larger and more fragmented distribution areas. Accumulation of viruses may be related to the historical expansion and contraction of bat species distribution range, with potentially strong effects of distribution edges on virus transmission. Two potential explanations may explain these results. A positive distribution edge effect on the abundance or distribution of some bat species could have facilitated host switches. Alternatively, parasitism could play a direct role in shaping the distribution range of hosts through host local extinction by virulent parasites. This study highlights the importance of considering the fragmentation of bat species geographical distribution in order to understand their role in the circulation of viruses in Africa.
Institut Pasteur de Bangui Bangui République Centrafricaine
Institute of Virology University of Bonn Medical Centre Bonn Germany
Zobrazit více v PubMed
Wong S, Lau S, Woo P, Yuen K (2007) Bats as a continuing source of emerging infections in humans. Rev Med Virol 67–91 doi:10.1002/rmv PubMed DOI PMC
Dobson AP (2005) What links bats to emerging infectious diseases? Science 310: 628–629 Available: http://www.ncbi.nlm.nih.gov/pubmed/16254175 PubMed
Maganga GD, Bourgarel M, Ella GE, Drexler JF, Gonzalez J-P, et al. (2011) Is Marburg virus enzootic in Gabon? J Infect Dis 204 Suppl: S800–3. Available: http://www.ncbi.nlm.nih.gov/pubmed/21987754. Accessed 24 June 2012 PubMed
Leroy EM, Kumulungui B, Pourrut X, Rouquet P, Hassanin A, et al. (2005) Fruit bats as reservoirs of Ebola virus. Nature 438: 575–576 Available: http://www.ncbi.nlm.nih.gov/pubmed/16319873. Accessed 28 March 2012 PubMed
Pourrut X, Souris M, Towner JS, Rollin PE, Nichol ST, et al. (2009) Large serological survey showing cocirculation of Ebola and Marburg viruses in Gabonese bat populations, and a high seroprevalence of both viruses in Rousettus aegyptiacus. BMC Infect Dis 9: 159 Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2761397&tool=pmcentrez&rendertype=abstract. Accessed 25 April 2012 PubMed PMC
Wang L-F, Shi Z, Zhang S, Field H, Daszak P, et al. (2006) Review of bats and SARS. Emerg Infect Dis 12: 1834–1840 Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3291347&tool=pmcentrez&rendertype=abstract PubMed PMC
Memish ZA, Mishra N, Olival KJ, Fagbo SF, Kapoor V, et al. (2013) Middle East respiratory syndrome coronavirus in bats, Saudi Arabia. Emerg Infect Dis 19: 1819–1823 Available: http://wwwnc.cdc.gov/eid/r/article/19/11/pdfs/13-1172.pdf. Accessed 8 November 2013 PubMed PMC
Keesing F, Belden LK, Daszak P, Dobson AP, Harvell CD, et al. (2010) Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468: 647–652 Available: http://www.ncbi.nlm.nih.gov/pubmed/21124449. Accessed 29 February 2012 PubMed PMC
Patterson BD, Dick CW, Dittmar K (2008) Parasitism by bat flies (Diptera: Streblidae) on neotropical bats: effects of host body size, distribution, and abundance. Parasitol Res 103: 1091–1100 Available: http://www.ncbi.nlm.nih.gov/pubmed/18633645. Accessed 19 June 2013 PubMed
Bordes F, Morand S, Ricardo G (2008) Bat fly species richness in Neotropical bats: correlations with host ecology and host brain. Oecologia 158: 109–116 Available: http://www.ncbi.nlm.nih.gov/pubmed/18679724. Accessed 19 June 2013 PubMed
Luis A, Hayman DTS, O'Shea T, Cryan P, Gilbert A, et al. (2013) A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special? Proc R Soc B Biol Sci 280: 20122753 Available: http://rspb.royalsocietypublishing.org/content/280/1756/20122753.short. Accessed 6 May 2013 PubMed PMC
Turmelle AS, Olival KJ (2009) Correlates of viral richness in bats (order Chiroptera). Ecohealth 6: 522–539 Available: http://www.ncbi.nlm.nih.gov/pubmed/20049506. Accessed 2 July 2012 PubMed PMC
Bordes F, Morand S (2011) The impact of multiple infections on wild animal hosts: a review. Infect Ecol Epidemiol 1: 1–10 Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3426331&tool=pmcentrez&rendertype=abstract. Accessed 26 May 2013 PubMed PMC
Torres J, Miquel J, Casanova J-C, Ribas A, Feliu C, et al. (2006) Endoparasite Species Richness of Iberian Carnivores: Influences of Host Density and Range Distribution. Biodivers Conserv 15: 4619–4632 Available: http://link.springer.com/10.1007/s10531-005-5824-8. Accessed 19 June 2013 DOI
Guégan JF, Kennedy CR (1996) Parasite richness/sampling effort/host range: the fancy three-piece jigsaw puzzle. Parasitol Today 12: 367–369 Available: http://www.ncbi.nlm.nih.gov/pubmed/15275176. Accessed 19 June 2013 PubMed
Lindenfors P, Nunn CL, Jones KE, Cunningham AA, Sechrest W, et al. (2007) Parasite species richness in carnivores: effects of host body mass, latitude, geographical range and population density. Glob Ecol Biogeogr 16: 496–509 Available: http://doi.wiley.com/10.1111/j.1466-8238.2006.00301.x. Accessed 27 May 2013 DOI
Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34: 487–515 Available: http://www.annualreviews.org/doi/abs/10.1146/annurev.ecolsys.34.011802.132419. Accessed 21 May 2013 DOI
Gaston K (1998) Species-range size distributions: products of speciation, extinction and transformation. Philos Trans R Soc B Biol Sci 353: 219–230 Available: http://rstb.royalsocietypublishing.org/content/353/1366/219.short. Accessed 18 June 2013
Holt R (2003) On the evolutionary ecology of species' ranges. Evol Ecol Res 5: 159–178 Available: http://people.biology.ufl.edu/rdholt/holtpublications/126.pdf. Accessed 19 June 2013
Cwynar LC, MacDonald GM (1987) Geographical variation of lodgepole pine in relation to population history. Am Nat 129: 463–469.
Messenger SL, Rupprecht CE, Smith JS (2003) Bats, emerging virus infections, and the rabies paradigm. In: Kunz TH, Fenton MB, editors. Bat ecology. Chicago, Illinois: University Press of Chicago. pp. 622–679.
Gannon W, Sikes R (2007) Guidelines of the American Society of Mammalogists for the use of wild mammals in research. J Mammal 88: 809–823 Available: http://asmjournals.org/doi/abs/10.1644/06-MAMM-F-185R1.1. Accessed 7 August 2012 PubMed DOI PMC
Kunz TH, Parsons S (2009) Ecological and behavioral methods for the study of bats. 2nd ed. Kunz TH, \Parsons S, editors Baltimore, Maryland: Johns Hopkins University Press.
Pourrut X, Délicat A, Rollin PE, Ksiazek TG, Gonzalez J-P, et al. (2007) Spatial and temporal patterns of Zaire ebolavirus antibody prevalence in the possible reservoir bat species. J Infect Dis 196 Suppl: S176–83 Available: http://www.ncbi.nlm.nih.gov/pubmed/17940947. Accessed 25 May 2012 PubMed
Towner JS, Pourrut X, Albariño CG, Nkogue CN, Bird BH, et al. (2007) Marburg virus infection detected in a common African bat. PLoS One 2: e764 Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1942080&tool=pmcentrez&rendertype=abstract. Accessed 11 July 2012 PubMed PMC
Sakai T, Kikkawa Y, Tsuchiya K, Harada M, Kanoe M, et al. (2003) Molecular phylogeny of Japanese Rhinolophidae based on variations in the complete sequence of the mitochondrial cytochrome b gene. Genes Genet Syst 78: 179–189. PubMed
Irwin DM, Kocher TD, Wilson AC (1991) Evolution of the Cytochrome b gene of mammals. J Mol Evol 32: 128–144 Available: http://www.researchgate.net/publication/21255081_Evolution_of_the_cytochrome_b_gene_of_mammals/file/9fcfd50a3ada225691.pdf. Accessed 20 June 2013 PubMed
Bickham JW, Wood CC, Patton JC (1995) Biogeographic Implications of Cytochrome b Sequences and Allozymes in Sockeye (Oncorhynchus nerka). J Hered 86: 140–144 Available: http://jhered.oxfordjournals.org/content/86/2/140.abstract PubMed
Bickham JW, Patton JC, Schlitter D a, Rautenbach IL, Honeycutt RL (2004) Molecular phylogenetics, karyotypic diversity, and partition of the genus Myotis (Chiroptera: Vespertilionidae). Mol Phylogenet Evol 33: 333–338 Available: http://www.ncbi.nlm.nih.gov/pubmed/15336668. Accessed 20 June 2013 PubMed
Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41: 95–98.
Teeling EC, Springer MS, Madsen O, Bates P, O'brien SJ, et al. (2005) A molecular phylogeny for bats illuminates biogeography and the fossil record. Science 307: 580–584 Available: http://www.ncbi.nlm.nih.gov/pubmed/15681385. Accessed 6 June 2013 PubMed
Almeida F, Giannini N, DeSalle R, Simmons NB (2011) Evolutionary relationships of the old world fruit bats (Chiroptera, Pteropodidae): Another star phylogeny? BMC Evol Biol 11: 281 Available: http://www.biomedcentral.com/1471-2148/11/281 PubMed PMC
De Souza Luna LK, Heiser V, Regamey N, Panning M, Drexler JF, et al. (2007) Generic detection of coronaviruses and differentiation at the prototype strain level by reverse transcription-PCR and nonfluorescent low-density microarray. J Clin Microbiol 45: 1049–1052 Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1829107&tool=pmcentrez&rendertype=abstract. Accessed 19 June 2013 PubMed PMC
Crochu S, Cook S, Attoui H, Charrel RN, De Chesse R, et al. (2004) Sequences of flavivirus-related RNA viruses persist in DNA form integrated in the genome of Aedes spp. mosquitoes. J Gen Virol 85: 1971–1980 Available: http://www.ncbi.nlm.nih.gov/pubmed/15218182. Accessed 21 May 2013 PubMed
Moureau G, Temmam S, Gonzalez J-P, Charrel RN, Grard G, et al. (2007) A real-time RT-PCR method for the universal detection and identification of flaviviruses. Vector-Borne 7: 467–477 Available: http://online.liebertpub.com/doi/abs/10.1089/vbz.2007.0206. Accessed 18 June 2013 PubMed DOI
Towner JS, Amman BR, Sealy TK, Carroll S a R, Comer J a, et al. (2009) Isolation of genetically diverse Marburg viruses from Egyptian fruit bats. PLoS Pathog 5: e1000536 Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2713404&tool=pmcentrez&rendertype=abstract. Accessed 7 June 2013 PubMed PMC
Jánoska M, Vidovszky M, Molnár V, Liptovszky M, Harrach B, et al. (2011) Novel adenoviruses and herpesviruses detected in bats. Vet J 189: 118–121 Available: http://www.ncbi.nlm.nih.gov/pubmed/20813566. Accessed 30 May 2013 PubMed
Fortin M, Keitt TH, Maurer BA, Taper ML, Kaufman DM, et al. (2005) Species' geographic ranges and distributional limits: pattern analysis and statistical issues. Oikos 1: 7–17.
Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20: 289–290 Available: http://bioinformatics.oxfordjournals.org/cgi/doi/10.1093/bioinformatics/btg412. Accessed 20 June 2013 PubMed DOI
Garland T, Harvey P, Ives A (1992) Procedures for the analysis of comparative data using phylogenetically independent contrasts. Syst Biol 41: 18–32 Available: http://sysbio.oxfordjournals.org/content/41/1/18.short. Accessed 20 June 2013
Kembel S, Cowan P, Helmus M, Cornwell W, Morlon H, et al. (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26: 1463–1464. PubMed
Streicker DG, Turmelle AS, Vonhof MJ, Kuzmin I V, McCracken GF, et al. (2010) Host phylogeny constrains cross-species emergence and establishment of rabies virus in bats. Science 329: 676–679 Available: http://www.ncbi.nlm.nih.gov/pubmed/20689015. Accessed 28 May 2013 PubMed
Hochberg M, Ives A (1999) Can natural enemies enforce geographical range limits? Ecography (Cop) 22: 268–276 Available: http://onlinelibrary.wiley.com/doi/10.1111/j.0030-1299.2005.13146.x/full. Accessed 19 June 2013 DOI
Kemp G, Le Gonidec G, Karabatsos N, Rickenbach A, Cropp C (1988) IFE: a new African orbivirus isolated from Eidolon helvum bats captured in Nigeria, Cameroon and the Central African Republic. Bull Soc Pathol Exot Fil 81: 40–48. PubMed
Hayman DTS, Suu-Ire R, Breed AC, McEachern J a, Wang L, et al. (2008) Evidence of henipavirus infection in West African fruit bats. PLoS One 3: e2739 Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2453319&tool=pmcentrez&rendertype=abstract. Accessed 30 May 2013 PubMed PMC
Hayman DTS, Fooks AR, Horton D, Suu-Ire R, Breed AC, et al. (2008) Antibodies against Lagos bat virus in megachiroptera from West Africa. Emerg Infect Dis 14: 926–928 Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2600291&tool=pmcentrez&rendertype=abstract PubMed PMC
Kuzmin I V, Niezgoda M, Franka R, Agwanda B, Markotter W, et al. (2008) Lagos bat virus in Kenya. J Clin Microbiol 46: 1451–1461 Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2292963&tool=pmcentrez&rendertype=abstract. Accessed 3 June 2013 PubMed PMC
Tong S, Conrardy C, Ruone S, Kuzmin I V, Guo X, et al. (2009) Detection of novel SARS-like and other coronaviruses in bats from Kenya. Emerg Infect Dis 15: 482–485 Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2681120&tool=pmcentrez&rendertype=abstract. Accessed 4 June 2013 PubMed PMC
Razafindratsimandresy R, Jeanmaire EM, Counor D, Vasconcelos PF, Sall AA, et al. (2009) Partial molecular characterization of alphaherpesviruses isolated from tropical bats. J Gen Virol 90: 44–47 Available: http://www.ncbi.nlm.nih.gov/pubmed/19088271. Accessed 30 May 2013 PubMed
Hayman DTS, Emmerich P, Yu M, Wang L-F, Suu-Ire R, et al. (2010) Long-term survival of an urban fruit bat seropositive for Ebola and Lagos bat viruses. PLoS One 5: e11978 Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2915915&tool=pmcentrez&rendertype=abstract. Accessed 1 April 2012 PubMed PMC
Wright E, Hayman DTS, Vaughan A, Temperton NJ, Wood JLN, et al. (2010) Virus neutralising activity of African fruit bat (Eidolon helvum) sera against emerging lyssaviruses. Virology 408: 183–189 Available: http://www.ncbi.nlm.nih.gov/pubmed/20951400. Accessed 24 May 2013 PubMed PMC
Dzikwi A a, Kuzmin II, Umoh JU, Kwaga JKP, Ahmad A a, et al. (2010) Evidence of Lagos bat virus circulation among Nigerian fruit bats. J Wildl Dis 46: 267–271 Available: http://www.ncbi.nlm.nih.gov/pubmed/20090042 PubMed
Drexler JF, Corman VM, Gloza-Rausch F, Seebens A, Annan A, et al. (2009) Henipavirus RNA in African bats. PLoS One 4: e6367 Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2712088&tool=pmcentrez&rendertype=abstract. Accessed 2 May 2012 PubMed PMC
Drexler JF, Corman VM, Müller MA, Maganga GD, Vallo P, et al. (2012) Bats host major mammalian paramyxoviruses. Nat Commun 3: 796 Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3343228&tool=pmcentrez&rendertype=abstract. Accessed 27 February 2013 PubMed PMC
Canuti M, Eis-Huebinger AM, Deijs M, de Vries M, Drexler JF, et al. (2011) Two novel parvoviruses in frugivorous New and Old World bats. PLoS One 6: e29140 Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3246463&tool=pmcentrez&rendertype=abstract. Accessed 25 March 2013 PubMed PMC
Esona MD, Mijatovic-Rustempasic S, Conrardy C, Tong S, Kuzmin I V, et al. (2010) Reassortant group A rotavirus from straw-colored fruit bat (Eidolon helvum). Emerg Infect Dis 16: 1844–1852 Available:http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3294550&tool=pmcentrez&rendertype=abstract. Accessed 20 June 2013 PubMed PMC
Markotter W, Kuzmin I, Rupprecht CE, Nel LH (2008) Phylogeny of Lagos bat virus: Challenges for lyssavirus taxonomy. Virus Res 135: 10–21 Available: http://linkinghub.elsevier.com/retrieve/pii/S0168170208000579. Accessed 4 May 2012 PubMed
Konstantinov O, Diallo S (2006) The mammals of Guinea as reservoirs and carriers of arboviruses]. Med Parazitol (Mosk) 1: 34–39 Available: http://www.ncbi.nlm.nih.gov/pubmed/16562748. Accessed 20 June 2013 PubMed
Kalunda M, Mukwaya LG, Mukuye A, Lule M, Sekyalo E, et al. (1986) Kasokero virus: a new human pathogen from bats (Rousettus aegyptiacus) in Uganda. Am J Trop Med Hyg 35: 387–392 Available: http://europepmc.org/abstract/MED/3082234 PubMed
Swanepoel R, Smit SB, Rollin PE, Formenty P, Leman Pa, et al. (2007) Studies of reservoir hosts for Marburg virus. Emerg Infect Dis 13: 1847–1851 Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2876776&tool=pmcentrez&rendertype=abstract PubMed PMC
Müller MA, Paweska JT, Leman PA, Drosten C, Grywna K, et al. (2007) Coronavirus antibodies in African bat Species. Emerg Infect 13: 1367–1370 Available: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857293/. Accessed 22 October 2012 PubMed PMC
Kuzmin IV, Niezgoda M, Franka R, Agwanda B, Markotter W, et al. (2010) Marburg virus in Fruit bat, Kenya. Emerg Infect Dis 16: 352–354. PubMed PMC
Rector A, Mostmans S, Van Doorslaer K, McKnight Ca, Maes RK, et al. (2006) Genetic characterization of the first chiropteran papillomavirus, isolated from a basosquamous carcinoma in an Egyptian fruit bat: the Rousettus aegyptiacus papillomavirus type 1. Vet Microbiol 117: 267–275 Available: http://www.ncbi.nlm.nih.gov/pubmed/16854536. Accessed 11 July 2012 PubMed PMC
Pfefferle S, Oppong S, Drexler JF, Gloza-Rausch F, Ipsen A, et al. (2009) Distant relatives of severe acute respiratory syndrome coronavirus and close relatives of human coronavirus 229E in bats, Ghana. Emerg Infect Dis 15: 1377–1384 Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2819850&tool=pmcentrez&rendertype=abstract. Accessed 6 June 2013 PubMed PMC
Quan P, Firth C, Street C, Henriquez J, Petrosov A, et al. (2010) Identification of a severe acute respiratory syndrome coronavirus-like virus in a leaf-nosed bat in Nigeria. MBio 1: 1–9 Available: http://mbio.asm.org/content/1/4/e00208-10.short. Accessed 24 June 2013 PubMed PMC
Hayman D, Fooks a R, Rowcliffe JM, McCrea R, Restif O, et al. (2012) Endemic Lagos bat virus infection in Eidolon helvum. Epidemiol Infect 1–9 Available: http://www.ncbi.nlm.nih.gov/pubmed/22370126. Accessed 8 August 2012 PubMed PMC
Kemp GE (1975) Viruses other than arenaviruses from West African wild mammals. Factors affecting transmission to man and domestic animals. Bull World Health Organ 52: 615–620 Available:http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2366648&tool=pmcentrez&rendertype=abstract PubMed PMC
Calisher CH, Childs JE, Field HE, Holmes KV, Schountz T (2006) Bats: important reservoir hosts of emerging viruses. Clin Microbiol Rev 19: 531–545 Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1539106&tool=pmcentrez&rendertype=abstract. Accessed 3 February 2013 PubMed PMC
IUCN (2012) IUCN Red List of Threatened Species. Version 20122.
Evidence for widespread infection of African bats with Crimean-Congo hemorrhagic fever-like viruses
Evidence for an Ancestral Association of Human Coronavirus 229E with Bats