Hepatic proteome sensitivity in rainbow trout after chronically exposed to a human pharmaceutical verapamil
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
21997734
PubMed Central
PMC3270096
DOI
10.1074/mcp.m111.008409
PII: S1535-9476(20)30544-2
Knihovny.cz E-zdroje
- MeSH
- 2D gelová elektroforéza MeSH
- antiarytmika farmakologie MeSH
- chemické látky znečišťující vodu farmakologie MeSH
- játra účinky léků metabolismus MeSH
- Oncorhynchus mykiss metabolismus MeSH
- proteom MeSH
- rybí proteiny metabolismus MeSH
- verapamil farmakologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antiarytmika MeSH
- chemické látky znečišťující vodu MeSH
- proteom MeSH
- rybí proteiny MeSH
- verapamil MeSH
Verapamil (VRP), a cardiovascular pharmaceutical widely distributed and persistent in the aquatic environment, has potential toxicity to fish and other aquatic organisms. However, the molecular mechanisms that lead to these toxic effects are not well known. In the present study, proteomic analysis has been performed to investigate the protein patterns that are differentially expressed in liver of rainbow trout exposed to sublethal concentrations of VRP (0.5, 27.0, and 270 μg/liter) for 42 days. Two-dimensional electrophoresis coupled with MALDI-TOF/TOF mass spectrometry was employed to detect and identify the protein profiles. The analysis revealed that the expression of six hepatic acidic proteins were markedly altered in the treatment groups compared with the control group; three proteins especially were significantly down-regulated in fish exposed to VRP at environmental related concentration (0.5 μg/liter). These results suggested that the VRP induce mechanisms against oxidative stress (glucose-regulated protein 78 and 94 and protein disulfide-isomerase A3) and adaptive changes in ion transference regulation (calreticulin, hyperosmotic glycine-rich protein). Furthermore, for the first time, protein Canopy-1 was found to be significantly down-regulated in fish by chronic exposure to VRP at environmental related levels. Overall, our work supports that fish hepatic proteomics analysis serves as an in vivo model for monitoring the residual pharmaceuticals in aquatic environment and can provide valuable insight into the molecular events in VRP-induced toxicity in fish and other organisms.
Zobrazit více v PubMed
Fent K., Weston A. A., Caminada D. (2006) Ecotoxicology of human pharmaceuticals. Aquat. Toxicol. 76, 122–159 PubMed
Li Z. H., Randak T. (2009) Residual pharmaceutically active compounds (PhACs) in aquatic environment—status, toxicity and kinetics: A review. Vet. Med.(Praha) 52, 295–314
Al-Rifai J. H., Gabelish C. L., Schäfer A. I. (2007) Occurrence of pharmaceutically active and non-steroidal estrogenic compounds in three different wastewater recycling schemes in Australia. Chemosphere 69, 803–815 PubMed
Khan S. J., Ongerth J. E. (2004) Modelling of pharmaceutical residues in Australian sewage by quantities of use and fugacity calculations. Chemosphere 54, 355–367 PubMed
Villegas-Navarro A., Rosas-L E., Reyes J. L. (2003) The heart of Daphnia magna: Effects of four cardioactive drugs. Comp. Biochem. Physiol. C 136, 127–134 PubMed
Arai T., Ikemoto T., Hokura A., Terada Y., Kunito T., Tanabe S., Nakai I. (2004) Chemical forms of mercury and cadmium accumulated in marine mammals and seabirds as determined by XAFS analysis. Enviro. Sci. Technol. 38, 6468–6474 PubMed
Li Z. H., Velisek J., Zlabek V., Grabic R., Machova J., Kolarova J., Li P., Randak T. (2011) Chronic toxicity of verapamil on juvenile rainbow trout (Oncorhynchus mykiss): Effects on morphological indices, hematological parameters and antioxidant responses. J. Hazard. Mater. 185, 870–880 PubMed
Li Z. H., Li P., Randak T. (2010) Ecotoxocological effects of short-term exposure to a human pharmaceutical verapamil in juvenile rainbow trout (Oncorhynchus mykiss). Comp. Biochem. Physiol. C 152, 385–391 PubMed
Dowling V. A., Sheehan D. (2006) Proteomics as a route to identification of toxicity targets in environmental toxicology. Proteomics 6, 5597–5604 PubMed
Li Z. H., Zlabek V., Li P., Grabic R., Velisek J., Machova J., Randak T. (2010) Biochemical and physiological responses in liver and muscle of rainbow trout after long-term exposure to propiconazole. Ecotoxicol. Environ. Saf. 73, 1391–1396 PubMed
Fang Y., Gao X., Zha J., Ning B., Li X., Gao Z., Chao F. (2010) Identification of differential hepatic proteins in rare minnow (Gobiocypris rarus) exposed to pentachlorophenol (PCP) by proteomic analysis. Toxicol. Lett. 199, 69–79 PubMed
Mezhoud K., Praseuth D., Puiseux-Dao S., François J. C., Bernard C., Edery M. (2008) Global quantitative analysis of protein expression and phosphorylation status in the liver of the medaka fish (Oryzias latipes) exposed to microcystin-LR: I. Balneation study. Aquat. Toxicol. 86, 166–175 PubMed
Wang M., Chan L. L., Si M., Hong H., Wang D. (2010) Proteomic analysis of hepatic tissue of zebrafish (Danio rerio) experimentally exposed to chronic Microcystin-LR. Toxicol. Sci. 113, 60–69 PubMed
Bradford M. M. (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein dye binding. Anal. Biochem. 72, 248–254 PubMed
Ellis R. J., van der Vies S. M. (1991) Molecular chaperones. Annu. Rev. Biochem. 60, 321–347 PubMed
Feder M. E., Hofmann G. E. (1999) Heat-shock proteins, molecular chaperones, and the stress response: Evolutionary and ecological physiology. Annu. Rev. Physiol. 61, 243–282 PubMed
Lindquist S. (1986) The heat shock response. Annu. Rev. Biochem. 55, 1151–1191 PubMed
Welch W. J. (1992) Mammalian stress response: Cell physiology, structure function of stress proteins, and implications for medicine and disease. Physiol. Rev. 72, 1063–1081 PubMed
Lee A. S. (1992) Mammalian stress response: induction of the glucose-regulated protein family. Curr. Opin. Cell Biol. 4, 267–273 PubMed
Fulladosa E., Delmas F., Jun L., Villaescusa I., Murat J. C. (2002) Cellular stress induced in cultured human cells by exposure to sludge extracts from water treatment plants. Ecotoxicol. Environ. Saf. 53, 134–140 PubMed
Delaney M. A., Klesius P. H. (2004) Hypoxic conditions induce Hsp70 production in blood, brain and head kidney of juvenile Nile tilapia Oreochromis niloticus (L.). Aquaculture 236, 633–644
Sanders B. M., Martin L. S. (1993) Stress proteins as biomarkers of contaminant exposure in archived environmental samples. Sci. Total Environ. 139–140, 459–470 PubMed
Liu H., Bowes R. C., 3rd, van de Water B., Sillence C., Nagelkerke J. F., Stevens J. L. (1997) Endoplasmic reticulum chaperones GRP78 and calreticulin prevent oxidative stress, Ca2+ disturbances, and cell death in renal epithelial cells. J. Biol. Chem. 272, 21751–21759 PubMed
Schroder H. C., Efremova S. M., Margulis B. A., Guzhova I. V., Itskovich V. B., Muller W. E. (2006) Stress response in Baikalian sponges exposed to pollutants. Hydrobiologia 568, 277–287
Martin S. A., Vilhelmsson O., Médale F., Watt P., Kaushik S., Houlihan D. F. (2003) Proteomic sensitivity to dietary manipulations in rainbow trout. Biochim. Biophys. Acta 1651, 17–29 PubMed
Cohen S. D., Pumford N. R., Khairallah E. A., Boekelheide K., Pohl L. R., Amouzadeh H. R., Hinson J. A. (1997) Selective protein covalent binding and target organ toxicity. Toxicol. Appl. Pharmacol. 143, 1–12 PubMed
Tu B. P., Weissman J. S. (2004) Oxidative protein folding in eukaryotes: Mechanisms and consequences. J. Cell Biol. 164, 341–346 PubMed PMC
Yoshimura F. K., Luo X. X. (2007) Induction of endoplasmic reticulum stress in thymic lymphocytes by the envelope precursor polyprotein of a murine leukemia virus during the preleukemic period. J. Virol. 81, 4374–4377 PubMed PMC
Gillardin V., Silvestre F., Dieu M., Delaive E., Raes M., Thomé J. P., Kestemont P. (2009) Protein expression profiling in the African clawed frog Xenopus laevis tadpoles exposed to the polychlorinated biphenyl mixture Aroclor 1254. Mol. Cell. Proteomics 8, 596–611 PubMed PMC
Pastorelli R., Carpi D., Campagna R., Airoldi L., Pohjanvirta R., Viluksela M., Hakansson H., Boutros P. C., Moffat I. D., Okey A. B., Fanelli R. (2006) Differential expression profiling of the hepatic proteome in a rat model of dioxin resistance. Mol. Cell. Proteomics 5, 882–894 PubMed
Oberemm A., Meckert C., Brandenburger L., Herzig A., Lindner Y., Kalenberg K., Krause E., Ittrich C., Kopp-Schneider A., Stahlmann R., Richter-Reichhelm H. B., Gundert-Remy U. (2005) Differential signatures of protein expression in marmoset liver and thymus induced by single-dose TCDD treatment. Toxicology 206, 33–48 PubMed
Chen C. Y., Jia J. H., Zhang M. X., Meng Y. S., Kong D. X., Pan X. L., Yu X. P. (2005) Proteomic analysis on multi-drug resistant cells HL-60/DOX of acute myeloblastic leukemia. Chin. J. Physiol. 48, 115–120 PubMed
Kim-Han J. S., O'Malley K. L. (2007) Cell stress induced by the parkinsonian mimetic, 6-hydroxydopamine, is concurrent with oxidation of the chaperone, ERp57, and aggresome formation. Antioxid. Redox Signal. 9, 2255–2264 PubMed
Huang T. S., Olsvik P. A., Krøvel A., Tung H. S., Torstensen B. E. (2009) Stress-induced expression of protein disulfide isomerase associated 3 (PDIA3) in Atlantic salmon (Salmo salar L.). Comp. Biochem. Physiol. B 154, 435–442 PubMed
Hendershot L. M. (2004) The ER chaperone BiP is a master regulator of ER function. Mt. Sinai J. Med. 71, 289–297 PubMed
Merchant M., Kinney C., Sanders P. (2009) Differential protein expression in alligator leukocytes in response to bacterial lipopolysaccharide injection. Comp Biochem. Phys D 4, 300–304 PubMed
Ruddat V. C., Whitman S., Klein R. D., Fischer S. M., Holman T. R. (2005) Evidence for downregulation of calcium signaling proteins in advanced mouse adenocarcinoma. Prostate 64, 128–138 PubMed
Poli V. (1998) The role of C/EBP isoforms in the control of inflammatory and native immunity functions. J. Biol. Chem. 273, 29279–29282 PubMed
Kales S. C., Bols N. C., Dixon B. (2007) Calreticulin in rainbow trout: A limited response to endoplasmic reticulum (ER) stress. Comp. Biochem. Physiol. B 147, 607–615 PubMed
Connon R. E., Geist J., Pfeiff J., Loguinov A. V., D'Abronzo L. S., Wintz H., Vulpe C. D., Werner I. (2009) Linking mechanistic and behavioral responses to sublethal esfenvalerate exposure in the endangered delta smelt; Hypomesus transpacificus (Fam. Osmeridae). BMC Genomics 10, 608. PubMed PMC
Zhang L., Wang W. X. (2007) Waterborne cadmium and zinc uptake in a euryhaline teleost Acanthopagrus schlegeli acclimated to different salinities. Aquat. Toxicol. 84, 173–181 PubMed
Pedersen T. V., Bjerregaard P. (1995) Calcium and cadmium fluxes across the gills of the shore crab, Carcinus maenas. Mar. Pollut. Bull. 31, 73–77
Hirate Y., Okamoto H. (2006) Canopy1, a novel regulator of FGF signaling around the midbrain-hindbrain boundary in zebrafish. Curr. Biol. 16, 421–427 PubMed