Plasticity of preferred body temperatures as means of coping with climate change?

. 2012 Apr 23 ; 8 (2) : 262-5. [epub] 20111109

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid22072284

Thermoregulatory behaviour represents an important component of ectotherm non-genetic adaptive capacity that mitigates the impact of ongoing climate change. The buffering role of behavioural thermoregulation has been attributed solely to the ability to maintain near optimal body temperature for sufficiently extended periods under altered thermal conditions. The widespread occurrence of plastic modification of target temperatures that an ectotherm aims to achieve (preferred body temperatures) has been largely overlooked. I argue that plasticity of target temperatures may significantly contribute to an ectotherm's adaptive capacity. Its contribution to population persistence depends on both the effectiveness of acute thermoregulatory adjustments (reactivity) in buffering selection pressures in a changing thermal environment, and the total costs of thermoregulation (i.e. reactivity and plasticity) in a given environment. The direction and magnitude of plastic shifts in preferred body temperatures can be incorporated into mechanistic models, to improve predictions of the impact of global climate change on ectotherm populations.

Zobrazit více v PubMed

Buckley L. B. 2008. Linking traits to energetics and population dynamics to predict lizard ranges in changing environments. Am. Nat. 171, E1–E1910.1086/523949 (doi:10.1086/523949) PubMed DOI

Huey R. B., Deutsch C. A., Tewksbury J. J., Vitt L. J., Hertz P. E., Perez H. J., Garland T., Jr 2009. Why tropical forest lizards are vulnerable to climate warming. Proc. R. Soc. B 276, 1939–194810.1098/rspb.2008.1957 (doi:10.1098/rspb.2008.1957) PubMed DOI PMC

Kearney M., Shine R., Porter W. P. 2009. The potential for behavioral thermoregulation to buffer ‘cold-blooded’ animals against climate warming. Proc. Natl Acad. Sci. USA 106, 3835–384010.1073/pnas.0808913106 (doi:10.1073/pnas.0808913106) PubMed DOI PMC

Sinervo B., et al. 2010. Erosion of lizard diversity by climate change and altered thermal niches. Science 328, 894–89910.1126/science.1184695 (doi:10.1126/science.1184695) PubMed DOI

Duckworth R. A. 2009. The role of behavior in evolution: a search for mechanism. Evol. Ecol. 23, 513–53110.1007/s10682-008-9252-6 (doi:10.1007/s10682-008-9252-6) DOI

Fry F. E. J. 1947. Effects of the environment on animal activity. Univ. Toronto Stud. Biol. Ser. 55, 1–62

Feder M. E., Pough F. H. 1975. Temperature selection by the red-backed salamander, Plethodon c. cinereus (Green) (Caudata: Plethodontidae). Comp. Biochem. Physiol. A 50, 91–9810.1016/S0010-406X(75)80207-6 (doi:10.1016/S0010-406X(75)80207-6) PubMed DOI

Krstevska B., Hoffmann A. A. 1994. The effects of acclimation and rearing conditions on the response of tropical and temperate populations of Drosophila melanogaster and Drosophila simulans to a temperature gradient (Diptera, Drosophilidae). J. Insect Behav. 7, 279–28810.1007/BF01989735 (doi:10.1007/BF01989735) DOI

Blumberg M. S., Lewis S. J., Sokoloff G. 2002. Incubation temperature modulates post-hatching thermoregulatory behavior in the Madagascar ground gecko, Paroedura pictus. J. Exp. Biol. 205, 2777–2784 PubMed

Williams S. E., Shoo L. P., Isaac J. L., Hoffmann A. A., Langham G. 2008. Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS Biol. 6, e325.10.1371/journal.pbio.0060325 (doi:10.1371/journal.pbio.0060325) PubMed DOI PMC

Huey R. B., Losos J. B., Moritz C. 2010. Are lizards toast? Science 328, 832–83310.1126/science.1190374 (doi:10.1126/science.1190374) PubMed DOI

Angilleta M. J. 2009. Thermal adaptation. Oxford, UK: Oxford University Press

Garside E. T., Tait J. S. D. 1958. Preferred temperature of rainbow trout (Salmo gairdneri Richardson) and its unusual relationship to acclimation temperature. Can. J. Zool. 36, 563–56710.1139/z58-052 (doi:10.1139/z58-052) DOI

Hutchison V. H., Hill L. G. 1976. Thermal selection in the hellbender, Cryptobranchus alleganiensis, and the mudpuppy, Necturus maculosus. Herpetologica 32, 327–331

Gvoždík L., Puky M., Šugerková M. 2007. Acclimation is beneficial at extreme test temperatures in the Danube crested newt, Triturus dobrogicus (Caudata, Salamandridae). Biol. J. Linn. Soc. 90, 627–63610.1111/j.1095-8312.2006.00752.x (doi:10.1111/j.1095-8312.2006.00752.x) DOI

Wilhoft D. C., Anderson J. D. 1960. Effect of acclimation on the preferred body temperature of the lizard, Sceloporus occidentalis. Science 131, 610–61110.1126/science.131.3400.610 (doi:10.1126/science.131.3400.610) PubMed DOI

Woods H. A., Harrison J. F. 2002. Interpreting rejections of the beneficial acclimation hypothesis: when is physiological plasticity adaptive? Evolution 56, 1863–1866 PubMed

Hadamová M., Gvoždík L. 2011. Seasonal acclimation of preferred body temperatures improves the opportunity for thermoregulation in newts. Physiol. Biochem. Zool. 84, 166–17410.1086/658202 (doi:10.1086/658202) PubMed DOI

Hutchison V. H., Dupré R. K. 1992. Thermoregulation. In Environmental physiology of amphibians (eds Feder M. E., Burggren W. W.), pp. 206–249 Chicago, IL: University of Chicago Press

Johnson J. A., Kelsch S. W. 1998. Effects of evolutionary thermal environment on temperature-preference relationships in fishes. Environ. Biol. Fish. 53, 447–45810.1023/A:1007425215669 (doi:10.1023/A:1007425215669) DOI

Chevin L. M., Lande R., Mace G. M. 2010. Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol. 8, e1000357.10.1371/journal.pbio.1000357 (doi:10.1371/journal.pbio.1000357) PubMed DOI PMC

Goodman R. M., Walguarnery J. W. 2007. Incubation temperature modifies neonatal thermoregulation in the lizard Anolis carolinensis. J. Exp. Zool. A 307, 439–448 PubMed

Withers P. C., Campbell J. D. 1985. Effects of environmental costs on thermoregulation in the desert iguana. Physiol. Zool. 58, 329–339

Downes S., Shine R. 1998. Heat, safety or solitude? Using habitat selection experiments to identify a lizard's priorities. Anim. Behav. 55, 1387–139610.1006/anbe.1997.0705 (doi:10.1006/anbe.1997.0705) PubMed DOI

Herczeg G., Herrero A., Saarikivi J., Gonda A., Jantti M., Merila J. 2008. Experimental support for the cost–benefit model of lizard thermoregulation: the effects of predation risk and food supply. Oecologia 155, 1–1010.1007/s00442-007-0886-9 (doi:10.1007/s00442-007-0886-9) PubMed DOI

DeWitt T. J., Sih A., Wilson D. S. 1998. Costs and limits of phenotypic plasticity. Trends Ecol. Evol. 13, 77–8110.1016/S0169-5347(97)01274-3 (doi:10.1016/S0169-5347(97)01274-3) PubMed DOI

Callahan H. S., Maughan H., Steiner U. K. 2008. Phenotypic plasticity, costs of phenotypes, and costs of plasticity: toward an integrative view. Ann. N. Y. Acad. Sci. 1133, 44–6610.1196/annals.1438.008 (doi:10.1196/annals.1438.008) PubMed DOI

Auld J. R., Agrawal A. A., Relyea R. A. 2010. Re-evaluating the costs and limits of adaptive phenotypic plasticity. Proc. R. Soc. B 277, 503–51110.1098/rspb.2009.1355 (doi:10.1098/rspb.2009.1355) PubMed DOI PMC

Buckley L. B., Urban M. C., Angilletta M. J., Crozier L. G., Rissler L. J., Sears M. W. 2010. Can mechanism inform species' distribution models? Ecol. Lett. 13, 1041–105410.1111/j.1461-0248.2010.01506.x (doi:10.1111/j.1461-0248.2010.01506.x) PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...