Plasticity of preferred body temperatures as means of coping with climate change?
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
22072284
PubMed Central
PMC3297409
DOI
10.1098/rsbl.2011.0960
PII: rsbl.2011.0960
Knihovny.cz E-zdroje
- MeSH
- aklimatizace * MeSH
- chování zvířat MeSH
- klimatické změny * MeSH
- selekce (genetika) MeSH
- teplota MeSH
- termoregulace * MeSH
- životní prostředí MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Thermoregulatory behaviour represents an important component of ectotherm non-genetic adaptive capacity that mitigates the impact of ongoing climate change. The buffering role of behavioural thermoregulation has been attributed solely to the ability to maintain near optimal body temperature for sufficiently extended periods under altered thermal conditions. The widespread occurrence of plastic modification of target temperatures that an ectotherm aims to achieve (preferred body temperatures) has been largely overlooked. I argue that plasticity of target temperatures may significantly contribute to an ectotherm's adaptive capacity. Its contribution to population persistence depends on both the effectiveness of acute thermoregulatory adjustments (reactivity) in buffering selection pressures in a changing thermal environment, and the total costs of thermoregulation (i.e. reactivity and plasticity) in a given environment. The direction and magnitude of plastic shifts in preferred body temperatures can be incorporated into mechanistic models, to improve predictions of the impact of global climate change on ectotherm populations.
Zobrazit více v PubMed
Buckley L. B. 2008. Linking traits to energetics and population dynamics to predict lizard ranges in changing environments. Am. Nat. 171, E1–E1910.1086/523949 (doi:10.1086/523949) PubMed DOI
Huey R. B., Deutsch C. A., Tewksbury J. J., Vitt L. J., Hertz P. E., Perez H. J., Garland T., Jr 2009. Why tropical forest lizards are vulnerable to climate warming. Proc. R. Soc. B 276, 1939–194810.1098/rspb.2008.1957 (doi:10.1098/rspb.2008.1957) PubMed DOI PMC
Kearney M., Shine R., Porter W. P. 2009. The potential for behavioral thermoregulation to buffer ‘cold-blooded’ animals against climate warming. Proc. Natl Acad. Sci. USA 106, 3835–384010.1073/pnas.0808913106 (doi:10.1073/pnas.0808913106) PubMed DOI PMC
Sinervo B., et al. 2010. Erosion of lizard diversity by climate change and altered thermal niches. Science 328, 894–89910.1126/science.1184695 (doi:10.1126/science.1184695) PubMed DOI
Duckworth R. A. 2009. The role of behavior in evolution: a search for mechanism. Evol. Ecol. 23, 513–53110.1007/s10682-008-9252-6 (doi:10.1007/s10682-008-9252-6) DOI
Fry F. E. J. 1947. Effects of the environment on animal activity. Univ. Toronto Stud. Biol. Ser. 55, 1–62
Feder M. E., Pough F. H. 1975. Temperature selection by the red-backed salamander, Plethodon c. cinereus (Green) (Caudata: Plethodontidae). Comp. Biochem. Physiol. A 50, 91–9810.1016/S0010-406X(75)80207-6 (doi:10.1016/S0010-406X(75)80207-6) PubMed DOI
Krstevska B., Hoffmann A. A. 1994. The effects of acclimation and rearing conditions on the response of tropical and temperate populations of Drosophila melanogaster and Drosophila simulans to a temperature gradient (Diptera, Drosophilidae). J. Insect Behav. 7, 279–28810.1007/BF01989735 (doi:10.1007/BF01989735) DOI
Blumberg M. S., Lewis S. J., Sokoloff G. 2002. Incubation temperature modulates post-hatching thermoregulatory behavior in the Madagascar ground gecko, Paroedura pictus. J. Exp. Biol. 205, 2777–2784 PubMed
Williams S. E., Shoo L. P., Isaac J. L., Hoffmann A. A., Langham G. 2008. Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS Biol. 6, e325.10.1371/journal.pbio.0060325 (doi:10.1371/journal.pbio.0060325) PubMed DOI PMC
Huey R. B., Losos J. B., Moritz C. 2010. Are lizards toast? Science 328, 832–83310.1126/science.1190374 (doi:10.1126/science.1190374) PubMed DOI
Angilleta M. J. 2009. Thermal adaptation. Oxford, UK: Oxford University Press
Garside E. T., Tait J. S. D. 1958. Preferred temperature of rainbow trout (Salmo gairdneri Richardson) and its unusual relationship to acclimation temperature. Can. J. Zool. 36, 563–56710.1139/z58-052 (doi:10.1139/z58-052) DOI
Hutchison V. H., Hill L. G. 1976. Thermal selection in the hellbender, Cryptobranchus alleganiensis, and the mudpuppy, Necturus maculosus. Herpetologica 32, 327–331
Gvoždík L., Puky M., Šugerková M. 2007. Acclimation is beneficial at extreme test temperatures in the Danube crested newt, Triturus dobrogicus (Caudata, Salamandridae). Biol. J. Linn. Soc. 90, 627–63610.1111/j.1095-8312.2006.00752.x (doi:10.1111/j.1095-8312.2006.00752.x) DOI
Wilhoft D. C., Anderson J. D. 1960. Effect of acclimation on the preferred body temperature of the lizard, Sceloporus occidentalis. Science 131, 610–61110.1126/science.131.3400.610 (doi:10.1126/science.131.3400.610) PubMed DOI
Woods H. A., Harrison J. F. 2002. Interpreting rejections of the beneficial acclimation hypothesis: when is physiological plasticity adaptive? Evolution 56, 1863–1866 PubMed
Hadamová M., Gvoždík L. 2011. Seasonal acclimation of preferred body temperatures improves the opportunity for thermoregulation in newts. Physiol. Biochem. Zool. 84, 166–17410.1086/658202 (doi:10.1086/658202) PubMed DOI
Hutchison V. H., Dupré R. K. 1992. Thermoregulation. In Environmental physiology of amphibians (eds Feder M. E., Burggren W. W.), pp. 206–249 Chicago, IL: University of Chicago Press
Johnson J. A., Kelsch S. W. 1998. Effects of evolutionary thermal environment on temperature-preference relationships in fishes. Environ. Biol. Fish. 53, 447–45810.1023/A:1007425215669 (doi:10.1023/A:1007425215669) DOI
Chevin L. M., Lande R., Mace G. M. 2010. Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol. 8, e1000357.10.1371/journal.pbio.1000357 (doi:10.1371/journal.pbio.1000357) PubMed DOI PMC
Goodman R. M., Walguarnery J. W. 2007. Incubation temperature modifies neonatal thermoregulation in the lizard Anolis carolinensis. J. Exp. Zool. A 307, 439–448 PubMed
Withers P. C., Campbell J. D. 1985. Effects of environmental costs on thermoregulation in the desert iguana. Physiol. Zool. 58, 329–339
Downes S., Shine R. 1998. Heat, safety or solitude? Using habitat selection experiments to identify a lizard's priorities. Anim. Behav. 55, 1387–139610.1006/anbe.1997.0705 (doi:10.1006/anbe.1997.0705) PubMed DOI
Herczeg G., Herrero A., Saarikivi J., Gonda A., Jantti M., Merila J. 2008. Experimental support for the cost–benefit model of lizard thermoregulation: the effects of predation risk and food supply. Oecologia 155, 1–1010.1007/s00442-007-0886-9 (doi:10.1007/s00442-007-0886-9) PubMed DOI
DeWitt T. J., Sih A., Wilson D. S. 1998. Costs and limits of phenotypic plasticity. Trends Ecol. Evol. 13, 77–8110.1016/S0169-5347(97)01274-3 (doi:10.1016/S0169-5347(97)01274-3) PubMed DOI
Callahan H. S., Maughan H., Steiner U. K. 2008. Phenotypic plasticity, costs of phenotypes, and costs of plasticity: toward an integrative view. Ann. N. Y. Acad. Sci. 1133, 44–6610.1196/annals.1438.008 (doi:10.1196/annals.1438.008) PubMed DOI
Auld J. R., Agrawal A. A., Relyea R. A. 2010. Re-evaluating the costs and limits of adaptive phenotypic plasticity. Proc. R. Soc. B 277, 503–51110.1098/rspb.2009.1355 (doi:10.1098/rspb.2009.1355) PubMed DOI PMC
Buckley L. B., Urban M. C., Angilletta M. J., Crozier L. G., Rissler L. J., Sears M. W. 2010. Can mechanism inform species' distribution models? Ecol. Lett. 13, 1041–105410.1111/j.1461-0248.2010.01506.x (doi:10.1111/j.1461-0248.2010.01506.x) PubMed DOI