Recovery from drought stress in tobacco: an active process associated with the reversal of senescence in some plant parts and the sacrifice of others
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
22301960
PubMed Central
PMC3357359
DOI
10.4161/psb.7.1.18375
PII: 18375
Knihovny.cz E-zdroje
- MeSH
- fyziologický stres * MeSH
- období sucha * MeSH
- tabák fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Plant response to water deficit and subsequent re-watering is fine tuned at the whole plant level. It differs not only between shoot and root, but also among particular leaves along a plant axis. We estimated the expression of proline metabolism-related genes and the activity of senescence-related promoter in roots and individual leaves of tobacco plants in the course of drought stress and recovery. Proline plays the dual role of an osmoprotectant and an antioxidant under water deficit. High proline concentration in the youngest uppermost leaves contributed to their protection from drought, which was associated with low degree of senescence. During recovery, elevated proline concentrations persisted and the senescence-related promoter was switched off in all surviving leaves. Two mutually exclusive scenarios were followed by tobacco leaves on recovery--restoration of photosynthesis and metabolism, or death, depending on the progress of senescence.
Zobrazit více v PubMed
Novikova GV, Moshkov IE, Los DA. Protein sensors and transducers of cold and osmotic stress in cyanobacteria and plants. J Mol Biol. 2007;41:427–37. doi: 10.1134/S0026893307030089. PubMed DOI
Hayano-Kanashiro C, Calderon-Vazquez C, Ibarra-Laclette E, Herrera-Estrella L, Simpson J. Analysis of gene expression and physiological responses in three Mexican maize landraces under drought stress and recovery irrigation. PLoS ONE. 2009;4:e7531. doi: 10.1371/journal.pone.0007531. PubMed DOI PMC
Pereira JS, Chaves MM. Plant water deficits in Mediterranean ecosystems. In: Smith JAC, Griffiths H, eds. Plant responses to water deficits – from cell to community. Oxford: BIOS Scientific 1993; 237-51.
Sharp RE. Interaction with ethylene: changing views on the role of abscisic acid in root and shoot responses to water stress. Plant Cell Environ. 2002;25:211–22. doi: 10.1046/j.1365-3040.2002.00798.x. PubMed DOI
Aloni R, Aloni E, Langhans M, Ullrich CI. Role of cytokinin and auxin in shaping root architecture: Regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann Bot. 2006;97:883–93. doi: 10.1093/aob/mcl027. PubMed DOI PMC
Havlov´ M, Dobrev PI, Motyka V, Štorchov´ H, Libus J, Dobr´ J, et al. The role of cytokinins in responses to water deficit in tobacco plants over-expressing trans-zeatin O-glucosyltransferase gene under 35S or SAG12 promoters. Plant Cell Environ. 2008;31:341–53. doi: 10.1111/j.1365-3040.2007.01766.x. PubMed DOI
Rolland F, Baena-Gonzalez E, Sheen J. Sugar sensing and signalling in plants: conserved and novel mechanisms. Annu Rev Plant Biol. 2006;57:675–709. doi: 10.1146/annurev.arplant.57.032905.105441. PubMed DOI
Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to drought and cold stress. Curr Opin Biotechnol. 1996;7:161–7. doi: 10.1016/S0958-1669(96)80007-3. PubMed DOI
Nishiyama R, Watanabe Y, Fujita Y, Le DT, Kojima M, Tom´s Werner T, et al. Tran. LSP Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and ABA responses, and ABA biosynthesis. Plant Cell. 2011;23:2169–2183. doi: 10.1105/tpc.111.087395. PubMed DOI PMC
Pinheiro C, Chaves MM. Photosynthesis and drought: can we make metabolic connections from available data? J Exp Bot. 2011;62:869–82. doi: 10.1093/jxb/erq340. PubMed DOI
Rivero RM, Shulaev V, Blumwald E. Cytokinin-dependent photorespiration and the protection of photosynhtesis during water deficit. Plant Physiol. 2009;150:1530–40. doi: 10.1104/pp.109.139378. PubMed DOI PMC
Di´az P, Betti M, Sanchez DH, Udvardi MK, Monza J, Marquez AJ. Deficiency in plastidic glutamine synthetase alters proline metabolism and transcriptomic response in Lotus japonicus under drought stress. New Phytol. 2010;188:1001–13. doi: 10.1111/j.1469-8137.2010.03440.x. PubMed DOI
Szabados L, Savoure A. Proline: a multifunctional amino acid. Trends Plant Sci. 2010;15:89–97. doi: 10.1016/j.tplants.2009.11.009. PubMed DOI
Dobr´ J, Motyka V, Dobrev P, Malbeck J, Pr´šil IT, Haisel D, et al. Comparison of hormonal responses to heat, drought and combined stress in tobacco plants with elevated proline content. J Plant Physiol. 2010;167:1360–70. doi: 10.1016/j.jplph.2010.05.013. PubMed DOI
Dobr´ J, Vankov´ R, Havlov´ M, Burman AJ, Libus J, Štorchov´ H. Tobacco leaves and roots differ in the expression of proline metabolism-related genes in the course of drought stress and subsequent recovery. J Plant Physiol. 2011;168:1588–97. doi: 10.1016/j.jplph.2011.02.009. PubMed DOI
Kiyosue T, Yoshiba Y, Yamaguchi-Shinozaki K, Shinozaki K. A nuclear gene encoding mitochondrial proline dehydrogenase, an enzyme involved in proline metabolism, is upregulated by proline but downregulated by dehydration in Arabidopsis. Plant Cell. 1996;8:1323–35. PubMed PMC
Sze´kely G, Abraham E, Cselo A, Rigo G, Zsigmond L, Csiszar J, et al. Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J. 2008;53:11–28. doi: 10.1111/j.1365-313X.2007.03318.x. PubMed DOI
Verbruggen N, Hermans C. Proline accumulation in plants: a review. Amino Acids. 2008;35:753–9. doi: 10.1007/s00726-008-0061-6. PubMed DOI
Beck JG, Mathieu D, Loudet C, Buchoux S, Dufourc EJ. Plant sterols in “rafts”: a better way to regulate membrane thermal shocks. FASEB J. 2007;21:1714–23. doi: 10.1096/fj.06-7809com. PubMed DOI
Gan S, Amasino RM. Inhibition of leaf senescence by autoregulated production of cytokinin. Science. 1995;270:1986–8. doi: 10.1126/science.270.5244.1986. PubMed DOI
Martin RC, Mok MC, Mok DWS. Isolation of a cytokinin gene, ZOG1, encoding zeatin O-glucosyltransferase from Phaseolus lunatus. Proc Natl Acad Sci USA. 1999;96:284–9. doi: 10.1073/pnas.96.1.284. PubMed DOI PMC
Haisel D, Vaňkov´ R, Synkov´ H, Pospi´šilov´ J. The impact of trans-zeatin O-glucosyltransferase gene over-expression in tobacco on pigment content and gas exchange. Biol Plant. 2008;52:49–58. doi: 10.1007/s10535-008-0007-6. DOI
Oono Y, Seki M, Nanjo T, Narusaka M, Fujita M, Satoh R, et al. Monitoring expression profiles of Arabidopsis gene expression during rehydration process after dehydration using ca. 7000 full-length cDNA microarray. Plant J. 2003;34:868–87. doi: 10.1046/j.1365-313X.2003.01774.x. PubMed DOI
Chaves MM. Effects of water deficits on carbon assimilation. J Exp Bot. 1991;42:1–16. doi: 10.1093/jxb/42.1.1. DOI