The phylotypic stage as a boundary of modular memory: non mechanistic perspective
Language English Country Germany Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Transcriptional Activation MeSH
- Models, Anatomic MeSH
- Biological Evolution MeSH
- Models, Biological MeSH
- DNA metabolism MeSH
- Drosophila melanogaster MeSH
- Phylogeny MeSH
- Genes, Homeobox MeSH
- Humans MeSH
- Mutation MeSH
- Mice MeSH
- Reproducibility of Results MeSH
- Signal Transduction MeSH
- Developmental Biology methods MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA MeSH
The concept of the phylotypic stage has been strongly integrated into developmental biology, thanks mostly to drawings presented by Haeckel (Anthropogenie oder Entwicklungsgeschichte des Menschen, 1874). They are printed in every textbook as proof of the existence of the phylotypic stage and the fact of its conservation, albeit many times criticized as misleading and simplifying (Richardson in Develop Biol 172:412-421, 1995, Richardson et al. in Anat Embryo 196:91-106, 1997; Bininda-Emons et al. in Proc R Soc Lond 270:341-346, 2003). Although generally accepted by modern biology, doubt still exists concerning the very existence or the usefulness of the concept. What kind of evolutionary and developmental horizons does it open indeed? This article begins with the history of the concept, discusses its validity and draws this into connotation with the idea of a memory activated throughout the development. Barbieri (The organic codes. An introduction to semantic biology, 2003) considers the phylotypic stage to be a crucial boundary when the genetic program ceases to suffice for further development of the embryo, and supracellular memory of the body plan is activated. This moment clearly coincides with the commencing of the modular development of the embryo. In this article the nature of such putative memory will be discussed.
See more in PubMed
Nature. 2010 Dec 9;468(7325):815-8 PubMed
J Exp Zool B Mol Dev Evol. 2004 Sep 15;302(5):446-57 PubMed
J Exp Zool. 2001 Aug 15;291(2):195-204 PubMed
J Exp Zool. 2000 Dec 15;288(4):304-17 PubMed
Syst Biol. 2000 Mar;49(1):3-18 PubMed
Proc Natl Acad Sci U S A. 2000 Jan 18;97(2):704-9 PubMed
J Exp Zool B Mol Dev Evol. 2006 Mar 15;306(2):89-106 PubMed
Evol Dev. 2004 Jan-Feb;6(1):6-16 PubMed
Naturwissenschaften. 2010 Nov;97(11):951-69 PubMed
J Exp Zool B Mol Dev Evol. 2005 Mar 15;304(2):150-8 PubMed
Dev Biol. 1995 Dec;172(2):412-21 PubMed
Nature. 2010 Dec 9;468(7325):811-4 PubMed
BMC Biol. 2007 Jan 12;5:1 PubMed
Science. 1996 Nov 15;274(5290):1205-8 PubMed
Dev Suppl. 1994;:135-42 PubMed
Proc Natl Acad Sci U S A. 1984 Aug;81(16):5126-9 PubMed
Nature. 2002 Nov 14;420(6912):211-7 PubMed
Ciba Found Symp. 1975;0(29):161-82 PubMed
Nature. 1993 Feb 11;361(6412):490-2 PubMed
Nat Rev Genet. 2005 Dec;6(12):893-904 PubMed
Nat Rev Genet. 2001 Jan;2(1):33-8 PubMed
Science. 1995 Mar 24;267(5205):1788-92 PubMed
Nat Rev Genet. 2007 Jun;8(6):473-9 PubMed
Proc Biol Sci. 2003 Feb 22;270(1513):341-6 PubMed
Anat Embryol (Berl). 1997 Aug;196(2):91-106 PubMed
Theory Biosci. 2007 Dec;126(4):131-48 PubMed
Development. 1999 Oct;126(19):4213-22 PubMed
Evolution by habit: Peirce, Lamarck, and teleology in biology