Estimating the number of colorectal cancer patients treated with anti-tumour therapy in 2015: the analysis of the Czech National Cancer Registry
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
22325812
PubMed Central
PMC3315738
DOI
10.1186/1471-2458-12-117
PII: 1471-2458-12-117
Knihovny.cz E-zdroje
- MeSH
- dítě MeSH
- dospělí MeSH
- kojenec MeSH
- kolorektální nádory farmakoterapie epidemiologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- předpověď MeSH
- předškolní dítě MeSH
- protinádorové látky terapeutické užití MeSH
- registrace * MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- kojenec MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika epidemiologie MeSH
- Názvy látek
- protinádorové látky MeSH
BACKGROUND: Colorectal cancer (CRC) represents a serious health care problem in the Czech Republic, introducing a need for a prospective modelling of the incidence and prevalence rates. The prevalence of patients requiring anti-tumour therapy is also of great importance, as it is directly associated with planning of health care resources. METHODS: This work proposes a population-based model for the estimation of stage-specific prevalence of CRC patients who will require active anti-tumour therapy in a given year. Its applicability is documented on records of the Czech National Cancer Registry (CNCR), which is used to estimate the number of patients potentially treated with anti-tumour therapy in the Czech Republic in 2015. RESULTS: Several scenarios are adopted to cover the plausible development of the incidence and survival rates, and the probability of an anti-tumour therapy initiation. Based on the scenarios, the model predicts an increase in CRC prevalence from 13% to 30% in comparison with the situation in 2008. Moreover, the model predicts that 10,074 to 11,440 CRC patients will be indicated for anti-tumour therapy in the Czech Republic in 2015. Considering all patients with terminal cancer recurrence and all patients primarily diagnosed in stage IV, it is predicted that 3,485 to 4,469 CRC patients will be treated for the metastatic disease in 2015, which accounts for more than one third (34-40%) of all CRC patients treated this year. CONCLUSIONS: A new model for the estimation of the number of CRC patients requiring active anti-tumour therapy is proposed in this paper. The model respects the clinical stage as the primary stratification factor and utilizes solely the population-based cancer registry data. Thus, no specific hospital data records are needed in the proposed approach. Regarding the short-term prediction of the CRC burden in the Czech Republic, the model confirms a continuous increase in the burden that must be accounted for in the future planning of health care in the Czech Republic.
Zobrazit více v PubMed
Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. GLOBOCAN 2008, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 10. Lyon: International Agency for Research on Cancer; 2010. Available from: http://globocan.iarc.fr.
Dušek L, Mužík J, Kubásek M, Koptíková J, Žaloudík J, Vyzula R. Epidemiology of Malignant Tumours in the Czech Republic. http://www.svod.cz/
Capocaccia R, Colonna M, Corazziari I, De Angelis R, Francisci S, Micheli A, Mugno E. Measuring prevalence in Europe: the EUROPREVAL project. Ann Oncol. 2002;13:831–839. doi: 10.1093/annonc/mdf152. PubMed DOI
Brown ML, Riley GF, Potosky AL, Etzioni RD. Obtaining long-term disease specific costs of care: application to Medicare enrolees diagnosed with colorectal cancer. Med Care. 1999;37:1249–1259. doi: 10.1097/00005650-199912000-00008. PubMed DOI
Mariotto AB, Yabroff KR, Feuer EJ, De Angelis R, Brown M. Projecting the number of patients with colorectal carcinoma by phases of care in the US: 2000-2020. Cancer Causes Control. 2006;17:1215–1226. doi: 10.1007/s10552-006-0072-0. PubMed DOI
Gatta G, Capocaccia R, Berrino F, Ruzza MR, Contiero P. Colon cancer prevalence and estimation of differing care needs of colon cancer patients. Ann Oncol. 2004;15:1136–1142. doi: 10.1093/annonc/mdh234. PubMed DOI
Chauvenet M, Lepage C, Jooste V, Cottet V, Faivre J, Bouvier AM. Prevalence of patients with colorectal cancer requiring follow-up or active treatment. Eur J Cancer. 2009;45:1460–1465. doi: 10.1016/j.ejca.2009.01.012. PubMed DOI
World Health Organization. ICD-O: International Classification of Diseases for Oncology. 3rd revision. Geneva. 1995.
Capocaccia R, De Angelis R. Estimating the completeness of prevalence based on cancer registry data. Stat Med. 1997;16:425–440. doi: 10.1002/(SICI)1097-0258(19970228)16:4<425::AID-SIM414>3.0.CO;2-Z. PubMed DOI
Czech Statistical Office. Demographic data of the Czech Republic and Death Records Database of the Czech Republic. http://www.czso.cz/eng/redakce.nsf/i/population
Hermanek P. Sobin LH: International Union Against Cancer (UICC): TNM Classification of Malignant Tumors. 4. Berlin: Springer; 1992.
Binding instructions of the National Health Information System (NHIS) Czech National Cancer Registry-instruction for the contents of data structure, version 051-20060101/2. Institute of Health Information and Statistics of the Czech Republic (IHIS), Prague; 2006. Available from: http://www.uzis.cz, section IHIS, part Binding instructions.
Bray F, Møller B. Predicting the future burden of cancer. Nat Rev Cancer. 2006;6:63–74. doi: 10.1038/nrc1781. PubMed DOI
Dyba T, Hakulinen T. Comparison of different approaches to incidence prediction based on simple interpolation techniques. Stat Med. 2000;19:1741–1752. doi: 10.1002/1097-0258(20000715)19:13<1741::AID-SIM496>3.0.CO;2-O. PubMed DOI
Marubini E, Valsecchi MG. Analysing Survival Data from Clinical Trials and Observational Studies. New York: Wiley; 2004.
Dušek L, Pavlík T, Májek O, Koptíková J, Gelnarová E, Mužík J, Vyzula R, Fínek J. In: Czech Cancer Care in Numbers 2008-2009. Dušek L, editor. Prague, Czrech Republic: Grada Publishing; 2009. Information System for Predictive Evaluation of Cancer Epidemiology and the Number of Cancer Patients in the Czech Republic; pp. 255–273.
Yabroff KR, Mariotto AB, Feuer E, Brown ML. Projections of the costs associated with colorectal cancer care in the United States, 2000-2020. Health Econ. 2008;17:947–959. doi: 10.1002/hec.1307. PubMed DOI
Dickman PW, Sloggett A, Hills M, Hakulinen T. Regression models for relative survival. Stat Med. 2004;23:51–64. doi: 10.1002/sim.1597. PubMed DOI
De Angelis R, Capocaccia R, Hakulinen T, Soderman B, Verdecchia A. Mixture models for cancer survival analysis: application to population-based data with covariates. Stat Med. 1999;18:441–454. doi: 10.1002/(SICI)1097-0258(19990228)18:4<441::AID-SIM23>3.0.CO;2-M. PubMed DOI
StataCorp. Stata Statistical Software: Release 10. College Station, TX: StataCorp LP; 2008.
Gras C, Daurés JP, Tretarre B. Age and stage specific prevalence estimate of cancer from population based Cancer Registry using inhomogeneous Poisson process. Stat Methods Med Res. 2004;13:273–289.
Clerc L, Jooste V, Lejeune C, Schmitt B, Arveux P, Quantin C, Faivre J, Bouvier AM. Cost of care of colorectal cancers according to health care patterns and stage at diagnosis in France. Eur J Health Econ. 2008;9:361–367. doi: 10.1007/s10198-007-0083-0. PubMed DOI
Gail MH, Kesser L, Midthune D, Scoppa S. Two approaches for estimation disease prevalence from Population-based registries of incidence and total mortality. Biometrics. 1999;55:1137–1144. doi: 10.1111/j.0006-341X.1999.01137.x. PubMed DOI
Verdecchia A, De Angelis G, Capocaccia R. Estimation and projection of cancer prevalence from cancer registry data. Stat Med. 2002;21:3511–3526. doi: 10.1002/sim.1304. PubMed DOI
Heinavaara S, Hakulinen T. Predicting the lung cancer burden: accounting for selection of the patients with respect to general population mortality. Stat Med. 2006;25:2967–2980. doi: 10.1002/sim.2443. PubMed DOI
Kruijshaar ME, Barendregt JJ, van de Poll-Franse LV. Estimating the prevalence of breast cancer using a disease model: data problems and trends. Popul Health Metr. 2003;1:5. doi: 10.1186/1478-7954-1-5. PubMed DOI PMC
Bashir S, Estéve J. Projecting cancer incidence and mortality using Bayesian age-period-cohort models. J Epidemiol Biostat. 2001;6:287–296. doi: 10.1080/135952201317080698. PubMed DOI
Simonetti A, Gigli A, Capocaccia R, Mariotto A. Estimating complete prevalence of cancers diagnosed in childhood. Stat Med. 2008;27:990–1007. doi: 10.1002/sim.3010. PubMed DOI
Møller B, Fekjaer H, Hakulinen T, Sigvaldason H, Storm HH, Talbäck M, Haldorsen T. Prediction of cancer incidence in the Nordic countries: empirical comparison of different approaches. Stat Med. 2003;22(17):2751–2766. doi: 10.1002/sim.1481. PubMed DOI
Pavlík T, Dušek L, Májek O, Žaloudík J. In: Czech Cancer Care in Numbers 2008-2009. Dušek L Prague, editor. Czech Republic: Grada Publishing; 2009. Five-year survival rates of cancer patients in the Czech Republic; pp. 339–376.
Engholm G, Ferlay J, Christensen N, Bray F, Gjerstorff ML, Klint A, Køtlum JE, Olafsdóttir E, Pukkala E, Storm HH. NORDCAN-a Nordic tool for cancer information, planning, quality control and research. Acta Oncol. 2010;49:725–736. doi: 10.3109/02841861003782017. PubMed DOI
Liang JT, Huang KC, Lai HS, Lee PH, Jeng YM. Oncologic results of laparoscopic versus conventional open surgery for stage II or III left-sided colon cancers: a randomized controlled trial. Ann Surg Oncol. 2007;14:109–117. PubMed
Sadahiro S, Suzuki T, Ishikawa K, Nakamura T, Tanaka Y, Masuda T, Mukoyama S, Yasuda S, Tajima T, Makuuchi H, Murayama C. Recurrence patterns after curative resection of colorectal cancer in patients followed for a minimum of ten years. Hepatogastroenterology. 2003;50:1362–1366. PubMed
Bosset JF, Collette L, Calais G, Mineur L, Maingon P. et al.EORTC Radiotherapy Group Trial 22921. Chemotherapy with preoperative radiotherapy in rectal cancer. N Engl J Med. 2006;355:1114–1123. doi: 10.1056/NEJMoa060829. PubMed DOI
Gérard JP, Conroy T, Bonnetain F, Bouché O, Chapet O. et al.Preoperative radiotherapy with or without concurrent fluorouracil and leucovorin in T3-4 rectal cancers: results of FFCD 9203. J Clin Oncol. 2006;24:4620–4625. doi: 10.1200/JCO.2006.06.7629. PubMed DOI
Colonna M, Grosclaude P, Launoy G, Tretarre B, Arveux P, Raverdy N, Benhamiche AM, Herbert C, Faivre J. Estimation of colorectal cancer prevalence in France. Eur J Cancer. 2001;37:93–96. doi: 10.1016/S0959-8049(00)00358-0. PubMed DOI
Manfredi S, Bouvier AM, Lepage C, Hatem C, Dancourt V, Faivre J. Incidence and patterns of recurrence after resection for cure of colonic cancer in a well defined population. Br J Surg. 2006;93:1115–1122. doi: 10.1002/bjs.5349. PubMed DOI
Dušek L, Mužík J, Gelnarová E, Fínek J, Vyzula R, Abrahámová J. Cancer incidence and mortality in the Czech Republic. Klin Onkol. 2010;23:311–324. PubMed
Colonna M, Danzon A, Delafosse P. et al.Cancer prevalence in France: time trend, situation in 2002 and extrapolation to 2012. Eur J Cancer. 2008;44:115–122. doi: 10.1016/j.ejca.2007.10.022. PubMed DOI
Májek O, Daneš J, Zavoral M, Dvořák V, Suchánek S, Seifert B. et al.Czech National Cancer Screening Programmes in 2010. Klin Onkol. 2010;23:343–353. PubMed
Fínek J, Vyzula R, Petera J, Indrák K, Štěrba J, Vorlíček J, Dušek L. In: Czech Cancer Care in Numbers 2008-2009. Dušek L Prague, editor. Czech Republic: Grada Publishing; 2009. Network of Cancer Care in the Czech Republic; pp. 24–32.