Analysis of Snail-1, E-cadherin and claudin-1 expression in colorectal adenomas and carcinomas
Jazyk angličtina Země Švýcarsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
22408413
PubMed Central
PMC3291982
DOI
10.3390/ijms13021632
PII: ijms13021632
Knihovny.cz E-zdroje
- Klíčová slova
- E-cadherin, Snail-1, adenocarcinoma, adenoma, claudin-1, immunohistochemistry,
- MeSH
- adenom metabolismus patologie MeSH
- claudin-1 biosyntéza MeSH
- epitelo-mezenchymální tranzice MeSH
- kadheriny biosyntéza MeSH
- karcinom metabolismus patologie MeSH
- kolorektální nádory metabolismus patologie MeSH
- lidé MeSH
- nádorové proteiny biosyntéza MeSH
- regulace genové exprese u nádorů * MeSH
- rodina transkripčních faktorů Snail MeSH
- transkripční faktory biosyntéza MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- claudin-1 MeSH
- CLDN1 protein, human MeSH Prohlížeč
- kadheriny MeSH
- nádorové proteiny MeSH
- rodina transkripčních faktorů Snail MeSH
- SNAI1 protein, human MeSH Prohlížeč
- transkripční faktory MeSH
We report the expression of Snail-1, E-cadherin and claudin-1 by indirect immunohistochemistry in colonic neoplasia. Snail-1 is a zinc finger transcription factor expressed in cells that already have undergone almost complete epithelial-mesenchymal transition (EMT) and have already evaded from the tumor. The main mechanism by which Snail induces EMT is downregulation of E-cadherin, of which expression was shown to be frequently downregulated in many different types of tumors, where it accompanies the invasiveness and metastatic behavior of malignant cells. Moreover, Snail-1 may downregulate the expression of claudin-1, a cell-cell adhesion protein which plays a likely role in progression and dissemination during tumorigenesis. Snail-1 was expressed in both carcinoma and adenoma cells with histologically normal epithelium in the mucosa, adjacent to the tumors, without significant differences, and predominant strong intensity of staining. Statistically significant differences were revealed between normal and tumorous epithelium (p = 0.003) at the subcellular level, where the shift of the protein to the cytoplasm with combined cytoplasmic/nuclear or pure cytoplasmic expression was observed. E-cadherin expression was present in 100% of cases of both adenocarcinomas and adenomas, with prevailing strong membranous immunoreactivity and no differences between protein expression in tumors and normal mucosa. Predominating strong positivity of claudin-1 was detected in tumor cells of adenocarcinomas and adenomas. Marked differences were seen in protein localization, where membranous staining, typical for nontumorous epithelium, changed to combined membranous/cytoplasmic expression in adenocarcinomas (p = 0.0001) and adenomas (0.0002), in which cytoplasmic shift was associated with a higher degree of dysplasia. Furthermore, membranous/cytoplasmic localization was more frequent in the carcinoma group (87%) in comparison with adenomas (51%) (p = 0.0001). We conclude that dystopic subcellular localizations of Snail-1 and claudin-1 may participate in changes of cellular morphology and behavior which might be associated with altered effectory pathways of proteins and thus substantially contribute to the cancer development.
Zobrazit více v PubMed
Kreizenbeck G.M., Berger A.J., Subtil A., Rimm D.L., Gould Rothberg B.E. Prognostic significance of cadherin-based adhesion molecules in cutaneous malignant melanoma. Cancer Epidemiol. Biomark. Prev. 2008;17:949–958. PubMed PMC
Thiery J.P. Epithelial-mesenchymal transitions in tumour progression. Nat. Rev. Cancer. 2002;2:442–454. PubMed
Yokoyama K., Kamata N., Hayashi E., Hoteiya T., Ueda N., Fujimoto R., Nagayama M. Reverse correlation of E-cadherin and snail expression in oral squamous cell carcinoma cells in vitro. Oral Oncol. 2001;37:65–71. PubMed
Blanco M.J., Moreno-Bueno G., Sarrio D., Locascio A., Cano A., Palacios J., Nieto M.A. Correlation of Snail expression with histological grade and lymph node status in breast carcinomas. Oncogene. 2002;21:3241–3246. PubMed
Jiao W., Miyazaki K., Kitajima Y. Inverse correlation between E-cadherin and Snail expression in hepatocellular carcinoma cell lines in vitro and in vivo. Br. J. Cancer. 2002;86:98–101. PubMed PMC
Rosivatz E., Becker I., Specht K., Fricke E., Luber B., Busch R., Höfler H., Becker K.F. Differential expression of the epithelial-mesenchymal transition regulators snail, SIP1, and twist in gastric cancer. Am. J. Pathol. 2002;161:1881–1891. PubMed PMC
Poser I., Domínguez D., de Herreros A.G., Varnai A., Buettner R., Bosserhoff A.K. Loss of E-cadherin expression in melanoma cells involves up-regulation of the transcriptional repressor Snail. J. Biol. Chem. 2001;276:24661–24666. PubMed
Francí C., Gallén M., Alameda F., Baró T., Iglesias M., Virtanen I., García de Herreros A. Snail1 protein in the stroma as a new putative prognosis marker for colon tumours. PLoS One. 2009;4 doi: 10.1371/journal.pone.0005595. PubMed DOI PMC
Peinado H., Olmeda D., Cano A. Snail, Zeb and bHLH factors in tumour progression: An alliance against the epithelial phenotype? Nat. Rev. Cancer. 2007;7:415–428. PubMed
Batlle E., Sancho E., Francí C., Domínguez D., Monfar M., Baulida J., García de Herreros A. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat. Cell Biol. 2000;2:84–89. PubMed
Cano A., Pérez-Moreno M.A., Rodrigo I., Locascio A., Blanco M.J., del Barrio M.G., Portillo F., Nieto M.A. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat. Cell Biol. 2000;2:76–83. PubMed
Hemavathy K., Ashraf S.I., Ip Y.T. Snail/slug family of repressors: Slowly going into the fast lane of development and cancer. Gene. 2000;257:1–12. PubMed
Strumane K., van Roy F., Berx G. The Role of E-Cadherin in Epithelial Differentiation and Cance Progression. In: Pandalai S.G., editor. Recent Research Development in Cellular Biochemistry. Transworld Research Network; Kerala, India: 2003. pp. 33–77.
Miwa N., Furuse M., Tsukita S., Niikawa N., Nakamura Y., Furukawa Y. Involvement of claudin-1 in the beta-catenin/Tcf signaling pathway and its frequent upregulation in human colorectal cancers. Oncol. Res. 2001;12:469–476. PubMed
Dhawan P., Singh A.B., Deane N.G., No Y., Shiou S.R., Schmidt C., Neff J., Washington M.K., Beauchamp R.D. Claudin-1 regulates cellular transformation and metastatic behavior in colon cancer. J. Clin. Invest. 2005;115:1765–1776. PubMed PMC
Resnick M.B., Konkin T., Routhier J., Sabo E., Pricolo V.E. Claudin-1 is a strong prognostic indicator in stage II colonic cancer: A tissue microarray study. Mod. Pathol. 2005;18:511–518. PubMed
Wu Y., Zhou B.P. TNF-α/NF-κB/Snail pathway in cancer cell migration and invasion. Br. J. Cancer. 2010;102:639–644. PubMed PMC
Fearon E.R., Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61:759–767. PubMed
Roy H.K., Iversen P., Hart J., Liu Y., Koetsier J.L., Kim Y., Kunte D.P., Madugula M., Backman V., Wali R.K. Down-regulation of SNAIL suppresses MIN mouse tumorigenesis: Modulation of apoptosis, proliferation, and fractal dimension. Mol. Cancer Ther. 2004;3:1159–1165. PubMed
Massoumi R., Kuphal S., Hellerbrand C., Haas B., Wild P., Spruss T., Pfeifer A., Fässler R., Bosserhoff A.K. Down-regulation of SNAIL suppresses MIN mouse tumorigenesis: Modulation of apoptosis, proliferation, and fractal dimension. J. Exp. Med. 2009;206:221–232. PubMed PMC
Wang Y., Zhou B.P. Epithelial-mesenchymal transition in breast cancer progression and metastasis. Chin. J. Cancer. 2011;30:603–611. PubMed PMC
Zhu Y., Nilsson M., Sundfeldt K. Phenotypic plasticity of the ovarian surface epithelium: TGF-beta 1 induction of epithelial to mesenchymal transition (EMT) in vitro. Endocrinology. 2010;151:5497–5505. PubMed
Domínguez D., Montserrat-Sentís B., Virgós-Soler A., Guaita S., Grueso J., Porta M., Puig I., Baulida J., Francí C., García de Herreros A. Phosphorylation regulates the subcellular location and activity of the snail transcriptional repressor. Mol. Cell Biol. 2003;23:5078–5089. PubMed PMC
Kaler P., Galea V., Augenlicht L., Klampfer L. Tumor associated macrophages protect colon cancer cells from TRAIL-induced apoptosis through IL-1beta-dependent stabilization of Snail in tumor cells. PLoS One. 2010;5 doi: 10.1371/journal.pone.0011700.. PubMed DOI PMC
Kudo-Saito C., Shirako H., Takeuchi T., Kawakami Y. Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells. Cancer Cell. 2009;15:195–206. PubMed
Weis W.I., Nelson W.J. Re-solving the cadherin-catenin-actin conundrum. J. Biol. Chem. 2006;281:35593–35597. PubMed PMC
Perl A.K., Wilgenbus P., Dahl U., Semb H., Christofori G. A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature. 1998;392:190–193. PubMed
Stemmer V., de Craene B., Berx G., Behrens J. Snail promotes Wnt target gene expression and interacts with beta-catenin. Oncogene. 2008;27:5075–5080. PubMed
Ikenouchi J., Matsuda M., Furuse M., Tsukita S. Regulation of tight junctions during the epithelium-mesenchyme transition: Direct repression of the gene expression of claudins/occludin by Snail. J. Cell Sci. 2003;116:1959–1967. PubMed
de Craene B., Gilbert B., Stove C., Bruyneel E., van Roy F., Berx G. The transcription factor snail induces tumor cell invasion through modulation of the epithelial cell differentiation program. Cancer Res. 2005;65:6237–6244. PubMed
Gröne J., Weber B., Staub E., Heinze M., Klaman I., Pilarsky C., Hermann K., Castanos-Velez E., Röpcke S., Mann B., et al. Differential expression of genes encoding tight junction proteins in colorectal cancer: Frequent dysregulation of claudin-1, -8 and -12. Int. J. Colorectal. Dis. 2007;22:651–659. PubMed
Shiou S.R., Singh A.B., Moorthy K., Datta P.K., Washington M.K., Beauchamp R.D., Dhawan P. Smad4 regulates claudin-1 expression in a transforming growth factor-beta-independent manner in colon cancer cells. Cancer Res. 2007;67:1571–1579. PubMed PMC
French A.D., Fiori J.L., Camilli T.C., Leotlela P.D., O’Connell M.P., Frank B.P., Subaran S., Indig F.E., Taub D.D., Weeraratna A.T. PKC and PKA phosphorylation affect the subcellular localization of claudin-1 in melanoma cells. Int. J. Med. Sci. 2009;6:93–101. PubMed PMC
Simet S.M., Wyatt T.A., Devasure J., Yanov D., Allen-Gipson D., Sisson J.H. Alcohol increases the permeability of airway epithelial tight junctions in beas-2B and NHBE cells. Alcohol. Clin. Exp. Res. 2011 doi: 10.1111/j.1530-0277.2011.01640.x.. PubMed DOI PMC
Mandel I., Paperna T., Glass-Marmor L., Volkowich A., Badarny S., Schwartz I., Vardi P., Koren I., Miller A. Tight junction proteins expression and modulation in immune cells and multiple sclerosis. J. Cell Mol. Med. 2011 doi: 10.1111/j.1582-4934.2011.01380.x.. PubMed DOI PMC
Cohn M.L., Goncharuk V.N., Diwan A.H., Zhang P.S., Shen S.S., Prieto V.G. Loss of claudin-1 expression in tumor-associated vessels correlates with acquisition of metastatic phenotype in melanocytic neoplasms. J. Cutan. Pathol. 2005;32:533–536. PubMed
Kaarteenaho-Wiik R., Soini Y. Claudin-1, -2, -3, -4, -5, and -7 in usual interstitial pneumonia and sarcoidosis. J. Histochem. Cytochem. 2009;57:187–195. PubMed PMC