An alternative theoretical approach to escape decision-making: the role of visual cues

. 2012 ; 7 (3) : e32522. [epub] 20120312

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid22427851

Escape enables prey to avoid an approaching predator. The escape decision-making process has traditionally been interpreted using theoretical models that consider ultimate explanations based on the cost/benefit paradigm. Ultimate approaches, however, suffer from inseparable extra-assumptions due to an inability to accurately parameterize the model's variables and their interactive relationships. In this study, we propose a mathematical model that uses intensity of predator-mediated visual stimuli as a basic cue for the escape response. We consider looming stimuli (i.e. expanding retinal image of the moving predator) as a cue to flight initiation distance (FID; distance at which escape begins) of incubating Mallards (Anas platyrhynchos). We then examine the relationship between FID, vegetation cover and directness of predator trajectory, and fit the resultant model to experimental data. As predicted by the model, vegetation concealment and directness of predator trajectory interact, with FID decreasing with increased concealment during a direct approach toward prey, but not during a tangential approach. Thus, we show that a simple proximate expectation, which involves only visual processing of a moving predator, may explain interactive effects of environmental and predator-induced variables on an escape response. We assume that our proximate approach, which offers a plausible and parsimonious explanation for variation in FID, may serve as an evolutionary background for traditional, ultimate explanations and should be incorporated into interpretation of escape behavior.

Zobrazit více v PubMed

Ydenberg R, Dill L. The economics of fleeing from predators. Adv Stud Behav. 1986;16:229–249.

Lima S, Dill L. Behavioral decisions made under the risk of predation - a review and prospectus. Can J Zool. 1990;68:619–640.

Cooper W, Frederick W. Optimal flight initiation distance. J Theor Biol. 2007;244:59–67. PubMed

Cooper W, Frederick W. Predator lethality, optimal escape behavior, and autotomy. Behav Ecol. 2010;21:91–96.

Broom M, Ruxton G. You can run - or you can hide: optimal strategies for cryptic prey against pursuit predators. Behav Ecol. 2005;16:534–540.

Stankowich T, Blumstein D. Fear in animals: a meta-analysis and review of risk assessment. P R Soc B. 2005;272:2627–2634. PubMed PMC

Louâpre P, van Alphen JJM, Pierre J-S. Humans and Insects Decide in Similar Ways. PLoS ONE. 2010;5:e14251. PubMed PMC

Phelps S. Sensory ecology and perceptual allocation: new prospects for neural networks. Philos. T R Soc B Sciences. 2007;362:355–367. PubMed PMC

Liu R, Niu Y, Wang S. Thalamic neurons in the pigeon compute distance-to-collision of an approaching surface. Brain Behav Evol. 2008;72:37–47. PubMed

Hemmi J, Pfeil A. A multi-stage anti-predator response increases information on predation risk. J Exp Biol. 2010;213:1484–1489. PubMed

Reboreda J, Kacelnik A. Risk sensitivity in starlings - variability in food amount and food delay. Behav Ecol. 1991;2:301–308.

Kacelnik A, Bateson M. Risky theories - The effects of variance on foraging decisions. Am Zool. 1996;36:402–434.

Kacelnik A, Abreu F. Risky choice and Weber's law. J Theor Biol. 1998;194:289–298. PubMed

Hutchinson JMC, Gigerenzer G. Simple heuristics and rules of thumb: Where psychologists and behavioural biologists might meet. Behav Process. 2005;69:97–124. PubMed

Feyerabend P. Knowledge and the role of theories. Philos Soc Sci. 1988;18:157–178.

Marsh B, Kacelnik A. Framing effects and risky decisions in starlings. P Natl Acad Sci USA. 2002;99:3352–3355. PubMed PMC

Giske J, Mangel M, Jakobsen P, Huse G, Wilcox C, et al. Explicit trade-off rules in proximate adaptive agents. Evol Ecol Res. 2003;5:835–865.

Cronin TW. The role of vision in predator–prey interactions. In: Barbosa P, Castellanos I, editors. Ecology of Predator–Prey Interactions. New York: Oxford University Press; 2005. pp. 105–138.

Blackwell B, Fernandez-Juricic E, Seamans T, Dolan T. Avian visual system configuration and behavioural response to object approach. Anim Behav. 2009;77:673–684.

Guillemain M, Duncan P, Fritz H. Switching to a feeding method that obstructs vision increases head-up vigilance in dabbling ducks. J Avian Biol. 2001;32:345–350.

Guillemain M, Martin G, Fritz H. Feeding methods, visual fields and vigilance in dabbling ducks (Anatidae). Funct Ecol. 2002;16:522–529.

Tisdale V, Fernandez-Juricic E. Vigilance and predator detection vary between avian species with different visual acuity and coverage. Behav Ecol. 2009;20:936–945.

Møller A, Erritzøe J. Flight Distance and Eye Size in Birds. Ethology. 2010;116:458–465.

Dill L. Escape response of zebra danio (Brachydanio rerio) .1. Stimulus for escape. Anim Behav. 1974;22:711–722.

Dukas R, Kamil A. Limited attention: the constraint underlying search image. Behav Ecol. 2001;12:192–199.

Hemmi J. Predator avoidance in fiddler crabs: 2. The visual cues. Anim Behav. 2005;69:615–625.

Quinn J, Cresswell W. Escape response delays in wintering redshank, Tringa totanus, flocks: perceptual limits and economic decisions. Anim Behav. 2005;69:1285–1292.

Smolka J, Zeil J, Hemmi JM. Natural visual cues eliciting predator avoidance in fiddler crabs. Proc Biol Sci. 2011;278:3584–3592. PubMed PMC

Glantz R. Defense reflex and motion detector responsiveness to approaching targets - motion detector trigger to defense reflex pathway. J Comp Physiol. 1974;95:297–314.

Nalbach H. Visually elicited escape in crabs. Adv Lif Sci. 1990:165–172.

Yamamoto K, Nakata M, Nakagawa H. Input and output characteristics of collision avoidance behavior in the frog Rana catesbeiana. Brain Behav Evol. 2003;62:201–211. PubMed

Preuss T, Osei-Bonsu P, Weiss S, Wang C, Faber D. Neural representation of object approach in a decision-making motor circuit. J Neurosci. 2006;26:3454–3464. PubMed PMC

Santer R, Rind F, Stafford R, Simmons P. Role of an identified looming-sensitive neuron in triggering a flying locust's escape. J Neurophysiol. 2006;95:3391–3400. PubMed

Oliva D, Medan V, Tomsic D. Escape behavior and neuronal responses to looming stimuli in the crab Chasmagnathus granulatus (Decapoda: Grapsidae). J Exp Biol. 2007;210:865–880. PubMed

Burger J, Gochfeld M. Discrimination of the threat of direct versus tangential approach to the nest by incubating Herring and Great black-backed gulls. J Comp Physiol Psych. 1981;95:676–684.

Cuadrado M, Martin J, Lopez P. Camouflage and escape decisions in the common chameleon Chamaeleo chamaeleon. Biol J Linn Soc. 2001;72:547–554.

Cooper W. Risk factors affecting escape behavior by the desert iguana, Dipsosaurus dorsalis: speed and directness of predator approach, degree of cover, direction of turning by a predator, and temperature. Can J Zool. 2003;81:979–984.

Albrecht T, Klvaňa P. Nest crypsis, reproductive value of a clutch and escape decisions in incubating female mallards Anas platyrhynchos. Ethology. 2004;110:603–613.

Lazarus J, Symonds M. Contrasting effects of protective and obstructive cover on avian vigilance. Anim Behav. 1992;43:519–521.

Boyer J, Hassa L, Lurie M, Blumstein D. Effect of visibility on time allocation an escape decisions in crimson rosellas. Aust J Zool. 2006;54:363–367.

Javůrkova V, Hořak D, Kreisinger J, Klvaňa P, Albrecht T. Factors Affecting Sleep/vigilance Behaviour in Incubating Mallards. Ethology. 2011;117:345–355.

Regan D, Vincent A. Visual processing of looming and time to contact throughout the visual field. Vis Res. 1995;35:1845–1857. PubMed

Vitásek E. Numerické metody. Praha SNTL: Nakladatelství technické literatury; 1987. 512

Weller MW. A simple field candler for waterfowl eggs. J Wildlife Manage. 1956;20:111–113.

Montgomerie RD, Weatherhead PJ. Risks and rewards of nest defence by parent birds. Q Rev Biol. 1988;63:167–187.

Hampton RR. Sensitivity to information specifying the line of gaze of humans in sparrows (Passer domesticus). Behaviour. 1994;130:41–51.

Blumstein D. Flight-initiation distance in birds is dependent on intruder starting distance. J Wildlife Manage. 2003;67:852–857.

Smith ME, Belk MC. Risk assessment in western mosquito fish (Gambusia affinis): do multiple cues have additive effects. Behav Ecol Sociobiol. 2001:101–107.

Cooper W, Perez-Mellado V, Baird T, Baird T, Caldwell J, et al. Effects of risk, cost, and their interaction on optimal escape by nonrefuging Bonaire whiptail lizards, Cnemidophorus murinus. Behav Ecol. 2003;14:288–293.

Cooper W. Fleeing and hiding under simultaneous risks and costs. Behav Ecol. 2009;20:665–671.

Castellano S, Cermelli P. Sampling and assessment accuracy in mate choice: A random-walk model of information processing in mating decision. J Theor Biol. 2011;274:161–169. PubMed

Domenici P. Context-dependent variability in the components of fish escape response: integrating locomotor performance and behavior. J Exp Zool Part A. 2010;313A:59–79. PubMed

Omlin M, Reichert P. A comparison of techniques for the estimation of model prediction uncertainty. Ecol Model. 1999;115:45–59.

Dukas R. Constraints on information processing and their effects on behaviour. In: Dukas R, editor. Cognitive Ecology. Chicago: University of Chicago Press; 1998. pp. 89–127.

Fleishman L. The influence of the sensory system and the environment on motion patterns in the visual-displays of anoline lizards and other vertebrates. Am Nat. 1992;139:36–61.

Fleishman L, Pallus A. Motion perception and visual signal design in Anolis lizards. P R Soc B. 2010;277:3547–3554. PubMed PMC

Paglianti A, Domenici P. The effect of size on the timing of visually mediated escape behaviour in staghorn sculpin Leptocottus armatus. J Fish Biol. 2006;68:1177–1191.

Devereux C, Whittingham M, Fernandez-Juricic E, Vickery J, Krebs J. Predator detection and avoidance by starlings under differing scenarios of predation risk. Behav Ecol. 2006;17:303–309.

Fotowat H, Gabbiani F. Relationship between the phases of sensory and motor activity during a looming-evoked multistage escape behavior. J Neurosci. 2007;27:10047–10059. PubMed PMC

Jablònski PG, Strausfeld NJ. Exploitation of an ancient escape circuit by an avian predator: prey sensitivity to model predator display in the field. Brain Behav Evol. 2000;56:94–106. PubMed

Stankowich T, Coss RG. Effects of predator behavior and proximity on risk assessment by Columbian black-tailed deer. Behav Ecol. 2006;17:246–254.

Cooper W. Fleeing and hiding under simultaneous risks and costs. Behav Ecol. 2009;20:665–671.

Noesselt T, Tyll S, Boehler CN, Budinger E, Heinze HJ, et al. Sound-induced enhancement of low-intensity vision: multisensory influences on human sensory-specific cortices and thalamic bodies relate to perceptual enhancement of visual detection sensitivity. J Neurosc. 2010;30:13609–13623. PubMed PMC

Llusia D, Marquez R, Beltran, JF Non-Selective and Time-Dependent Behavioural Responses of Common Toads (Bufo bufo) to Predator Acoustic Cues. Ethology. 2010;116:1146–1154.

Rattenborg NC, Lima SL, Amlaner CJ. Half-awake to the risk of predation. Nature. 1999;397:397–398. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...