During social interactions, decision-making involves mutual reciprocity-each individual's choices are simultaneously a consequence of, and antecedent to those of their interaction partner. Neuroeconomic research has begun to unveil the brain networks underpinning social decision-making, but we know little about the patterns of neural connectivity within them that give rise to reciprocal choices. To investigate this, the present study measured the behaviour and brain function of pairs of individuals (N = 66) whilst they played multiple rounds of economic exchange comprising an iterated ultimatum game. During these exchanges, both players could attempt to maximise their overall monetary gain by reciprocating their opponent's prior behaviour-they could promote generosity by rewarding it, and/or discourage unfair play through retaliation. By adapting a model of reciprocity from experimental economics, we show that players' choices on each exchange are captured accurately by estimating their expected utility (EU) as a reciprocal reaction to their opponent's prior behaviour. We then demonstrate neural responses that map onto these reciprocal choices in two brain regions implicated in social decision-making: right anterior insula (AI) and anterior/anterior-mid cingulate cortex (aMCC). Finally, with behavioural Dynamic Causal Modelling, we identified player-specific patterns of effective connectivity between these brain regions with which we estimated each player's choices with over 70% accuracy; namely, bidirectional connections between AI and aMCC that are modulated differentially by estimates of EU from our reciprocity model. This input-state-output modelling procedure therefore reveals systematic brain-behaviour relationships associated with the reciprocal choices characterising interactive social decision-making.
- MeSH
- cingulární gyrus diagnostické zobrazování fyziologie MeSH
- dospělí MeSH
- exekutivní funkce fyziologie MeSH
- interpersonální vztahy * MeSH
- konektom * MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- mladý dospělý MeSH
- mozková kůra diagnostické zobrazování fyziologie MeSH
- nervová síť diagnostické zobrazování fyziologie MeSH
- rozhodování fyziologie MeSH
- senioři MeSH
- sociální percepce * MeSH
- výběrové chování fyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Processing fluency, a metacognitive feeling of ease of cognitive processing, serves as a cue in various types of judgments. Processing fluency is sometimes evaluated by response times, with shorter response times indicating higher fluency. The present study examined existence of the opposite association; that is, it tested whether disfluency may lead to faster decision times when it serves as a strong cue in judgment. Retrieval fluency was manipulated in an experiment using previous presentation and phonological fluency by varying pronounceability of pseudowords. Participants liked easy-to-pronounce and previously presented words more. Importantly, their decisions were faster for hard-to-pronounce and easy-to-pronounce pseudowords than for pseudowords moderate in pronounceability. The results thus showed an inverted-U shaped relationship between fluency and decision times. The findings suggest that disfluency can lead to faster decision times and thus demonstrate the importance of separating different processes comprising judgment when response times are used as a measure of processing fluency.
- MeSH
- lidé MeSH
- mínění fyziologie MeSH
- rozhodování fyziologie MeSH
- rozpoznávání (psychologie) fyziologie MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
The prefrontal cortex is deputed to higher functions, such as behavior and personality. It includes three regions: ventromedial, orbitofrontal, and dorsolateral. Each of them has a function. Devising, programming, and planning are all conditions related to the dorsolateral cortex, also responsible for rational content and decision. Damage to this region results in apathetic syndrome, a condition that causes loss of interest, initiative, and attention, and in the most severe cases leads to a lethargic state. It is also known as a form of secondary depression, the so-called pseudo-depression syndrome, according to Karl Kleist or apathetic-abulic-akinetic syndrome, according to Alexander Luria. The prefrontal dorsolateral syndrome is responsible for the reduction or abolition of free will. Free will is an expression of individual freedom. It allows the human being to have and express own opinions as well as to respect those of others. Free will is related to moral sense, a binomial which directs the individual towards a proper social conduct. In this review, we describe the effects of the pseudo-depression syndrome on free will, of which we treat both the anatomical site and the social aspect.
Electroencephalography (EEG) oscillations reflect the superposition of different cortical sources with potentially different frequencies. Various blind source separation (BSS) approaches have been developed and implemented in order to decompose these oscillations, and a subset of approaches have been developed for decomposition of multi-subject data. Group independent component analysis (Group ICA) is one such approach, revealing spatiospectral maps at the group level with distinct frequency and spatial characteristics. The reproducibility of these distinct maps across subjects and paradigms is relatively unexplored domain, and the topic of the present study. To address this, we conducted separate group ICA decompositions of EEG spatiospectral patterns on data collected during three different paradigms or tasks (resting-state, semantic decision task and visual oddball task). K-means clustering analysis of back-reconstructed individual subject maps demonstrates that fourteen different independent spatiospectral maps are present across the different paradigms/tasks, i.e. they are generally stable.
- MeSH
- algoritmy MeSH
- analýza hlavních komponent MeSH
- elektroencefalografie metody statistika a číselné údaje MeSH
- interpretace obrazu počítačem metody MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- mapování mozku metody MeSH
- mladý dospělý MeSH
- počítačové zpracování signálu MeSH
- psychomotorický výkon fyziologie MeSH
- reprodukovatelnost výsledků MeSH
- rozhodování fyziologie MeSH
- shluková analýza MeSH
- zraková percepce fyziologie MeSH
- Check Tag
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The Iowa Gambling Task (IGT) is one of the most popular experimental paradigms for comparing complex decision-making across groups. Most commonly, IGT behavior is analyzed using frequentist tests to compare performance across groups, and to compare inferred parameters of cognitive models developed for the IGT. Here, we present a Bayesian alternative based on Bayesian repeated-measures ANOVA for comparing performance, and a suite of three complementary model-based methods for assessing the cognitive processes underlying IGT performance. The three model-based methods involve Bayesian hierarchical parameter estimation, Bayes factor model comparison, and Bayesian latent-mixture modeling. We illustrate these Bayesian methods by applying them to test the extent to which differences in intuitive versus deliberate decision style are associated with differences in IGT performance. The results show that intuitive and deliberate decision-makers behave similarly on the IGT, and the modeling analyses consistently suggest that both groups of decision-makers rely on similar cognitive processes. Our results challenge the notion that individual differences in intuitive and deliberate decision styles have a broad impact on decision-making. They also highlight the advantages of Bayesian methods, especially their ability to quantify evidence in favor of the null hypothesis, and that they allow model-based analyses to incorporate hierarchical and latent-mixture structures.
- MeSH
- Bayesova věta * MeSH
- exekutivní funkce fyziologie MeSH
- interpretace statistických dat * MeSH
- lidé MeSH
- neuropsychologické testy * MeSH
- posilování (psychologie) * MeSH
- psychologické modely * MeSH
- rozhodování fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Inhibitory control processes are known to be modulated by working memory demands. However, the neurobiological mechanisms behind these modulations are inconclusive. One important system to consider in this regard is the locus coeruleus (LC) norepinephrine (NE) system. In the current study the role of the LC-NE system by means of pupil diameter recordings that are integrated with neurophysiological (EEG) and source localization data were examined. A combined mental-rotation Go/Nogo task was used. The results show that increases in working memory load complicate response inhibition processes. On a neurophysiological level these effects were reflected by specific modulations in event-related potentials (ERPs) reflecting motor inhibition processes (i.e., Nogo-P3). Attentional selection processes (reflected by the P1 and N1) as well as pre-motor inhibition or conflict monitoring processes (reflected by the Nogo-N2) were not affected. Activity of the LC-NE systems, as indexed by the pupil diameter data, predicted neurophysiological processes selectively in the Nogo-P3 time range. Source localization analyses suggest that this modulation occurs in the right middle and inferior frontal gyrus. The study provides evidence that the LC-NE system is an important neurobiological system modulating the effects of working memory load on response inhibition processes. More specifically, it modulates a subset of dissociable cognitive processes that are related to prefrontal cortical regions. Hum Brain Mapp 38:68-81, 2017. © 2016 Wiley Periodicals, Inc.
- MeSH
- analýza rozptylu MeSH
- dospělí MeSH
- elektroencefalografie MeSH
- evokované potenciály fyziologie MeSH
- inhibice (psychologie) * MeSH
- krátkodobá paměť fyziologie MeSH
- lidé MeSH
- mapování mozku * MeSH
- mladiství MeSH
- mladý dospělý MeSH
- neuropsychologické testy MeSH
- pupila fyziologie MeSH
- reakční čas fyziologie MeSH
- rozhodování fyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
An important brain function is to predict upcoming events on the basis of extracted regularities of previous inputs. These predictive coding processes can disturb performance in concurrent perceptual decision-making and are known to depend on fronto-striatal circuits. However, it is unknown whether, and if so, to what extent striatal microstructural properties modulate these processes. We addressed this question in a human disease model of striosomal dysfunction, i.e. X-linked dystonia-parkinsonism (XDP), using high-density EEG recordings and source localization. The results show faster and more accurate perceptual decision-making performance during distraction in XDP patients compared to healthy controls. The electrophysiological data show that sensory memory and predictive coding processes reflected by the mismatch negativity related to lateral prefrontal brain regions were weakened in XDP patients and thus induced less cognitive conflict than in controls as reflected by the N2 event-related potential (ERP). Consequently, attentional shifting (P3a ERP) and reorientation processes (RON ERP) were less pronounced in the XDP group. Taken together, these results suggests that striosomal dysfunction is related to predictive coding deficits leading to a better performance in concomitant perceptual decision-making, probably because predictive coding does not interfere with perceptual decision-making processes. These effects may reflect striatal imbalances between the striosomes and the matrix compartment.
- MeSH
- corpus striatum patofyziologie MeSH
- dospělí MeSH
- dystonické poruchy patofyziologie psychologie MeSH
- elektroencefalografie MeSH
- evokované potenciály MeSH
- genetické nemoci vázané na chromozom X patofyziologie psychologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mozek patofyziologie MeSH
- reakční čas MeSH
- rozhodování fyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
The ability to inhibit responses is a central sensorimotor function but only recently the importance of sensory processes for motor inhibition mechanisms went more into the research focus. In this regard it is elusive, whether there are differences between sensory modalities to trigger response inhibition processes. Due to functional neuroanatomical considerations strong differences may exist, for example, between the visual and the tactile modality. In the current study we examine what neurophysiological mechanisms as well as functional neuroanatomical networks are modulated during response inhibition. Therefore, a Go/NoGo-paradigm employing a novel combination of visual, tactile, and visuotactile stimuli was used. The data show that the tactile modality is more powerful than the visual modality to trigger response inhibition processes. However, the tactile modality loses its efficacy to trigger response inhibition processes when being combined with the visual modality. This may be due to competitive mechanisms leading to a suppression of certain sensory stimuli and the response selection level. Variations in sensory modalities specifically affected conflict monitoring processes during response inhibition by modulating activity in a frontal parietal network including the right inferior frontal gyrus, anterior cingulate cortex and the temporoparietal junction. Attentional selection processes are not modulated. The results suggest that the functional neuroanatomical networks involved in response inhibition critically depends on the nature of the sensory input. Hum Brain Mapp 38:1941-1951, 2017. © 2017 Wiley Periodicals, Inc.
- MeSH
- dospělí MeSH
- elektroencefalografie MeSH
- evokované potenciály fyziologie MeSH
- funkční lateralita MeSH
- fyzikální stimulace MeSH
- hmat fyziologie MeSH
- inhibice (psychologie) * MeSH
- lidé MeSH
- mapování mozku * MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mozková kůra fyziologie MeSH
- percepce fyziologie MeSH
- pozornost fyziologie MeSH
- reakční čas fyziologie MeSH
- rozhodování fyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- MeSH
- biologické markery MeSH
- C-reaktivní protein MeSH
- interleukin-6 krev MeSH
- lidé MeSH
- poruchy paměti etiologie MeSH
- pozornost fyziologie MeSH
- prefrontální mozková kůra fyziologie patofyziologie MeSH
- psychický stres * patofyziologie MeSH
- rozhodování fyziologie MeSH
- zkracování telomer fyziologie MeSH
- Check Tag
- lidé MeSH
Complex decision making tasks of different natures, e.g. economics, safety engineering, ecology and biology, are based on vague, sparse, partially inconsistent and subjective knowledge. Moreover, decision making economists / engineers are usually not willing to invest too much time into study of complex formal theories. They require such decisions which can be (re)checked by human like common sense reasoning. One important problem related to realistic decision making tasks are incomplete data sets required by the chosen decision making algorithm. This paper presents a relatively simple algorithm how some missing III (input information items) can be generated using mainly decision tree topologies and integrated into incomplete data sets. The algorithm is based on an easy to understand heuristics, e.g. a longer decision tree sub-path is less probable. This heuristic can solve decision problems under total ignorance, i.e. the decision tree topology is the only information available. But in a practice, isolated information items e.g. some vaguely known probabilities (e.g. fuzzy probabilities) are usually available. It means that a realistic problem is analysed under partial ignorance. The proposed algorithm reconciles topology related heuristics and additional fuzzy sets using fuzzy linear programming. The case study, represented by a tree with six lotteries and one fuzzy probability, is presented in details.