Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Social decision-making in the brain: Input-state-output modelling reveals patterns of effective connectivity underlying reciprocal choices

D. Shaw, K. Czekóová, M. Gajdoš, R. Staněk, J. Špalek, M. Brázdil,

. 2019 ; 40 (2) : 699-712. [pub] 20181115

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20022901

Grantová podpora
GA16-18261S Grantová agentura České republiky (GA ČR) - International

During social interactions, decision-making involves mutual reciprocity-each individual's choices are simultaneously a consequence of, and antecedent to those of their interaction partner. Neuroeconomic research has begun to unveil the brain networks underpinning social decision-making, but we know little about the patterns of neural connectivity within them that give rise to reciprocal choices. To investigate this, the present study measured the behaviour and brain function of pairs of individuals (N = 66) whilst they played multiple rounds of economic exchange comprising an iterated ultimatum game. During these exchanges, both players could attempt to maximise their overall monetary gain by reciprocating their opponent's prior behaviour-they could promote generosity by rewarding it, and/or discourage unfair play through retaliation. By adapting a model of reciprocity from experimental economics, we show that players' choices on each exchange are captured accurately by estimating their expected utility (EU) as a reciprocal reaction to their opponent's prior behaviour. We then demonstrate neural responses that map onto these reciprocal choices in two brain regions implicated in social decision-making: right anterior insula (AI) and anterior/anterior-mid cingulate cortex (aMCC). Finally, with behavioural Dynamic Causal Modelling, we identified player-specific patterns of effective connectivity between these brain regions with which we estimated each player's choices with over 70% accuracy; namely, bidirectional connections between AI and aMCC that are modulated differentially by estimates of EU from our reciprocity model. This input-state-output modelling procedure therefore reveals systematic brain-behaviour relationships associated with the reciprocal choices characterising interactive social decision-making.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20022901
003      
CZ-PrNML
005      
20201214124943.0
007      
ta
008      
201125s2019 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1002/hbm.24446 $2 doi
035    __
$a (PubMed)30431199
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Shaw, Daniel $u Department of Psychology, School of Life and Health Sciences, Aston University, Birmingham, United Kingdom. Behavioural and Social Neuroscience Research Group, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
245    10
$a Social decision-making in the brain: Input-state-output modelling reveals patterns of effective connectivity underlying reciprocal choices / $c D. Shaw, K. Czekóová, M. Gajdoš, R. Staněk, J. Špalek, M. Brázdil,
520    9_
$a During social interactions, decision-making involves mutual reciprocity-each individual's choices are simultaneously a consequence of, and antecedent to those of their interaction partner. Neuroeconomic research has begun to unveil the brain networks underpinning social decision-making, but we know little about the patterns of neural connectivity within them that give rise to reciprocal choices. To investigate this, the present study measured the behaviour and brain function of pairs of individuals (N = 66) whilst they played multiple rounds of economic exchange comprising an iterated ultimatum game. During these exchanges, both players could attempt to maximise their overall monetary gain by reciprocating their opponent's prior behaviour-they could promote generosity by rewarding it, and/or discourage unfair play through retaliation. By adapting a model of reciprocity from experimental economics, we show that players' choices on each exchange are captured accurately by estimating their expected utility (EU) as a reciprocal reaction to their opponent's prior behaviour. We then demonstrate neural responses that map onto these reciprocal choices in two brain regions implicated in social decision-making: right anterior insula (AI) and anterior/anterior-mid cingulate cortex (aMCC). Finally, with behavioural Dynamic Causal Modelling, we identified player-specific patterns of effective connectivity between these brain regions with which we estimated each player's choices with over 70% accuracy; namely, bidirectional connections between AI and aMCC that are modulated differentially by estimates of EU from our reciprocity model. This input-state-output modelling procedure therefore reveals systematic brain-behaviour relationships associated with the reciprocal choices characterising interactive social decision-making.
650    _2
$a dospělí $7 D000328
650    _2
$a senioři $7 D000368
650    _2
$a mozková kůra $x diagnostické zobrazování $x fyziologie $7 D002540
650    _2
$a výběrové chování $x fyziologie $7 D002755
650    12
$a konektom $7 D063132
650    _2
$a rozhodování $x fyziologie $7 D003657
650    _2
$a exekutivní funkce $x fyziologie $7 D056344
650    _2
$a cingulární gyrus $x diagnostické zobrazování $x fyziologie $7 D006179
650    _2
$a lidé $7 D006801
650    12
$a interpersonální vztahy $7 D007398
650    _2
$a magnetická rezonanční tomografie $7 D008279
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a lidé středního věku $7 D008875
650    _2
$a nervová síť $x diagnostické zobrazování $x fyziologie $7 D009415
650    12
$a sociální percepce $7 D012938
650    _2
$a mladý dospělý $7 D055815
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Czekóová, Kristína $u Behavioural and Social Neuroscience Research Group, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
700    1_
$a Gajdoš, Martin $u Multimodal and Functional Imaging Laboratory, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
700    1_
$a Staněk, Rostislav $u Department of Economics, Faculty of Economics and Administration, Masaryk University, Brno, Czech Republic.
700    1_
$a Špalek, Jiří $u Department of Public Economics, Faculty of Economics and Administration, Masaryk University, Brno, Czech Republic.
700    1_
$a Brázdil, Milan $u Behavioural and Social Neuroscience Research Group, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
773    0_
$w MED00002066 $t Human brain mapping $x 1097-0193 $g Roč. 40, č. 2 (2019), s. 699-712
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30431199 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20201214124943 $b ABA008
999    __
$a ok $b bmc $g 1595220 $s 1113577
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 40 $c 2 $d 699-712 $e 20181115 $i 1097-0193 $m Human brain mapping $n Hum Brain Mapp $x MED00002066
GRA    __
$a GA16-18261S $p Grantová agentura České republiky (GA ČR) $2 International
LZP    __
$a Pubmed-20201125

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...