Mutation in the Drosophila melanogaster adenosine receptor gene selectively decreases the mosaic hyperplastic epithelial outgrowth rates in wts or dco heterozygous flies
Language English Country Netherlands Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
25528157
PubMed Central
PMC4336310
DOI
10.1007/s11302-014-9435-2
Knihovny.cz E-resources
- MeSH
- Drosophila melanogaster MeSH
- Membrane Transport Proteins genetics MeSH
- Mutation * MeSH
- Drosophila Proteins genetics MeSH
- Receptors, Purinergic P1 genetics MeSH
- Signal Transduction genetics MeSH
- Loss of Heterozygosity MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- adenosine deaminase-related growth factor, Drosophila MeSH Browser
- ENT2 protein, Drosophila MeSH Browser
- Membrane Transport Proteins MeSH
- Drosophila Proteins MeSH
- Receptors, Purinergic P1 MeSH
Adenosine (Ado) is a ubiquitous metabolite that plays a prominent role as a paracrine homeostatic signal of metabolic imbalance within tissues. It quickly responds to various stress stimuli by adjusting energy metabolism and influencing cell growth and survival. Ado is also released by dead or dying cells and is present at significant concentrations in solid tumors. Ado signaling is mediated by Ado receptors (AdoR) and proteins modulating its concentration, including nucleoside transporters and Ado deaminases. We examined the impact of genetic manipulations of three Drosophila genes involved in Ado signaling on the incidence of somatic mosaic clones formed by the loss of heterozygosity (LOH) of tumor suppressor and marker genes. We show here that genetic manipulations with the AdoR, equilibrative nucleoside transporter 2 (Ent2), and Ado deaminase growth factor-A (Adgf-A) cause dramatic changes in the frequency of hyperplastic outgrowth clones formed by LOH of the warts (wts) tumor suppressor, while they have almost no effect on control yellow (y) clones. In addition, the effect of AdoR is dose-sensitive and its overexpression leads to the increase in wts hyperplastic epithelial outgrowth rates. Consistently, the frequency of mosaic hyperplastic outgrowth clones generated by the LOH of another tumor suppressor, discs overgrown (dco), belonging to the wts signaling pathway is also dependent on AdoR. Our results provide interesting insight into the maintenance of tissue homeostasis at a cellular level.
See more in PubMed
Cunha RA. Adenosine neuromodulation and neuroprotection. In: Lajtha A, editor. Handbook of neurochemistry and molecular neurobiology. New York: Springer; 2008. pp. 256–273.
Fredholm BB. Adenosine, an endogenous distress signal, modulates tissue damage and repair. Cell Death Differ. 2007;14(7):1315–1323. doi: 10.1038/sj.cdd.4402132. PubMed DOI
Mondal BC, Mukherjee T, Mandal L, Evans CJ, Sinenko SA, Martinez-Agosto JA, Banerjee U. Interaction between differentiating cell- and niche-derived signals in hematopoietic progenitor maintenance. Cell. 2011;147(7):1589–1600. doi: 10.1016/j.cell.2011.11.041. PubMed DOI PMC
Andersson O, Adams BA, Yoo D, Ellis GC, Gut P, Anderson RM, German MS, Stainier DY. Adenosine signaling promotes regeneration of pancreatic beta cells in vivo. Cell Metab. 2012;15(6):885–894. doi: 10.1016/j.cmet.2012.04.018. PubMed DOI PMC
Burnstock G, Verkhratsky A. Evolutionary origins of the purinergic signalling system. Acta Physiol (Oxf) 2009;195(4):415–447. doi: 10.1111/j.1748-1716.2009.01957.x. PubMed DOI
Kucerova L, Broz V, Fleischmannova J, Santruckova E, Sidorov R, Dolezal V, Zurovec M. Characterization of the Drosophila adenosine receptor: the effect of adenosine analogs on cAMP signaling in Drosophila cells and their utility for in vivo experiments. J Neurochem. 2012;121(3):383–395. doi: 10.1111/j.1471-4159.2012.07701.x. PubMed DOI
Dolezelova E, Nothacker HP, Civelli O, Bryant PJ, Zurovec M. A Drosophila adenosine receptor activates cAMP and calcium signaling. Insect Biochem Mol Biol. 2007;37(4):318–329. doi: 10.1016/j.ibmb.2006.12.003. PubMed DOI
Wu MN, Ho K, Crocker A, Yue Z, Koh K, Sehgal A. The effects of caffeine on sleep in Drosophila require PKA activity, but not the adenosine receptor. J Neurosci. 2009;29(35):11029–11037. doi: 10.1523/JNEUROSCI.1653-09.2009. PubMed DOI PMC
Dolezelova E, Zurovec M, Dolezal T, Simek P, Bryant PJ. The emerging role of adenosine deaminases in insects. Insect Biochem Mol Biol. 2005;35(5):381–389. doi: 10.1016/j.ibmb.2004.12.009. PubMed DOI
Hirsh AJ, Stonebraker JR, van Heusden CA, Lazarowski ER, Boucher RC, Picher M. Adenosine deaminase 1 and concentrative nucleoside transporters 2 and 3 regulate adenosine on the apical surface of human airway epithelia: implications for inflammatory lung diseases. Biochemistry. 2007;46(36):10373–10383. doi: 10.1021/bi7009647. PubMed DOI
Knight D, Harvey PJ, Iliadi KG, Klose MK, Iliadi N, Dolezelova E, Charlton MP, Zurovec M, Boulianne GL. Equilibrative nucleoside transporter 2 regulates associative learning and synaptic function in Drosophila. J Neurosci. 2010;30(14):5047–5057. doi: 10.1523/JNEUROSCI.6241-09.2010. PubMed DOI PMC
Dolezal T, Dolezelova E, Zurovec M, Bryant PJ. A role for adenosine deaminase in Drosophila larval development. Plos Biology. 2005;3(7):e201. doi: 10.1371/journal.pbio.0030201. PubMed DOI PMC
Dolezal T, Gazi M, Zurovec M, Bryant PJ. Genetic analysis of the ADGF multigene family by homologous recombination and gene conversion in Drosophila. Genetics. 2003;165(2):653–666. PubMed PMC
Fishman P, Bar-Yehuda S, Synowitz M, Powell JD, Klotz KN, Gessi S, Borea PA. Adenosine receptors and cancer. Handb Exp Pharmacol. 2009;193:399–441. doi: 10.1007/978-3-540-89615-9_14. PubMed DOI PMC
Gessi S, Merighi S, Sacchetto V, Simioni C, Borea PA. Adenosine receptors and cancer. Biochim Biophys Acta. 2011;1808(5):1400–1412. doi: 10.1016/j.bbamem.2010.09.020. PubMed DOI
Sitkovsky M, Ohta A. Targeting the hypoxia-adenosinergic signaling pathway to improve the adoptive immunotherapy of cancer. J Mol Med. 2013;91(2):147–155. doi: 10.1007/s00109-013-1001-9. PubMed DOI PMC
Spychala J. Tumor-promoting functions of adenosine. Pharmacol Ther. 2000;87(2–3):161–173. doi: 10.1016/S0163-7258(00)00053-X. PubMed DOI
Reddy BV, Rauskolb C, Irvine KD. Influence of fat-hippo and notch signaling on the proliferation and differentiation of Drosophila optic neuroepithelia. Development. 2010;137(14):2397–2408. doi: 10.1242/dev.050013. PubMed DOI PMC
Xu T, Wang W, Zhang S, Stewart RA, Yu W. Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase. Development. 1995;121(4):1053–1063. PubMed
Katoh M. Function and cancer genomics of FAT family genes (review) Int J Oncol. 2012;41(6):1913–1918. PubMed PMC
Stern C. Somatic crossing over and segregation in Drosophila melanogaster. Genetics. 1936;21(6):625–730. PubMed PMC
Sidorov RA, Ugnivenko EG, Khovanova EM, Belitsky GA. Induction of tumor clones in D. melanogaster wts/+ heterozygotes with chemical carcinogens. Mutat Res. 2001;498(1–2):181–191. doi: 10.1016/S1383-5718(01)00277-7. PubMed DOI
Lee T, Luo L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron. 1999;22(3):451–461. doi: 10.1016/S0896-6273(00)80701-1. PubMed DOI
Urbakh VY. Mathematical statistics for biologists and medicine specialists. Moscow: USSR Academy of Science Publishers; 1963.
Busygina V, Suphapeetiporn K, Marek LR, Stowers RS, Xu T, Bale AE. Hypermutability in a Drosophila model for multiple endocrine neoplasia type 1. Hum Mol Genet. 2004;13(20):2399–2408. doi: 10.1093/hmg/ddh271. PubMed DOI
Szakmary A, Huang SM, Chang DT, Beachy PA, Sander M. Overexpression of a Rrp1 transgene reduces the somatic mutation and recombination frequency induced by oxidative DNA damage in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1996;93(4):1607–1612. doi: 10.1073/pnas.93.4.1607. PubMed DOI PMC
Wu Y, Zheng J, Linden J, Holoshitz J. Genoprotective pathways. Part I. Extracellular signaling through G(s) protein-coupled adenosine receptors prevents oxidative DNA damage. Mutat Res. 2004;546(1–2):93–102. doi: 10.1016/j.mrfmmm.2003.11.003. PubMed DOI
Feng YQ, Irvine KD. Processing and phosphorylation of the Fat receptor. Proc Natl Acad Sci U S A. 2009;106(29):11989–11994. doi: 10.1073/pnas.0811540106. PubMed DOI PMC
Sopko R, Silva E, Clayton L, Gardano L, Barrios-Rodiles M, Wrana J, Varelas X, Arbouzova NI, Shaw S, Saburi S, Matakatsu H, Blair S, McNeill H. Phosphorylation of the tumor suppressor fat is regulated by its ligand Dachsous and the kinase discs overgrown. Curr Biol. 2009;19(13):1112–1117. doi: 10.1016/j.cub.2009.05.049. PubMed DOI PMC
Halder G, Johnson RL. Hippo signaling: growth control and beyond. Development. 2011;138(1):9–22. doi: 10.1242/dev.045500. PubMed DOI PMC
Neto-Silva RM, de Beco S, Johnston LA. Evidence for a growth-stabilizing regulatory feedback mechanism between Myc and Yorkie, the Drosophila homolog of Yap. Dev Cell. 2010;19(4):507–520. doi: 10.1016/j.devcel.2010.09.009. PubMed DOI PMC
Tyler DM, Baker NE. Expanded and fat regulate growth and differentiation in the Drosophila eye through multiple signaling pathways. Dev Biol. 2007;305(1):187–201. doi: 10.1016/j.ydbio.2007.02.004. PubMed DOI PMC
Cherbas L, Willingham A, Zhang D, Yang L, Zou Y, Eads BD, Carlson JW, Landolin JM, Kapranov P, Dumais J, Samsonova A, Choi JH, Roberts J, Davis CA, Tang H, van Baren MJ, Ghosh S, Dobin A, Bell K, Lin W, Langton L, Duff MO, Tenney AE, Zaleski C, Brent MR, Hoskins RA, Kaufman TC, Andrews J, Graveley BR, Perrimon N, Celniker SE, Gingeras TR, Cherbas P. The transcriptional diversity of 25 Drosophila cell lines. Genome Res. 2011;21(2):301–314. doi: 10.1101/gr.112961.110. PubMed DOI PMC
Fleischmannova J, Kucerova L, Sandova K, Steinbauerova V, Broz V, Simek P, Zurovec M. Differential response of Drosophila cell lines to extracellular adenosine. Insect Biochem Mol Biol. 2012;42(5):321–331. doi: 10.1016/j.ibmb.2012.01.002. PubMed DOI
Zurovec M, Dolezal T, Gazi M, Pavlova E, Bryant PJ. Adenosine deaminase-related growth factors stimulate cell proliferation in Drosophila by depleting extracellular adenosine. Proc Natl Acad Sci U S A. 2002;99(7):4403–4408. doi: 10.1073/pnas.062059699. PubMed DOI PMC
Tyler DM, Li W, Zhuo N, Pellock B, Baker NE. Genes affecting cell competition in Drosophila. Genetics. 2007;175(2):643–657. doi: 10.1534/genetics.106.061929. PubMed DOI PMC
de la Cova C, Abril M, Bellosta P, Gallant P, Johnston LA. Drosophila myc regulates organ size by inducing cell competition. Cell. 2004;117(1):107–116. doi: 10.1016/S0092-8674(04)00214-4. PubMed DOI
Moreno E, Basler K. dMyc transforms cells into super-competitors. Cell. 2004;117(1):117–129. doi: 10.1016/S0092-8674(04)00262-4. PubMed DOI
Shaw RL, Kohlmaier A, Polesello C, Veelken C, Edgar BA, Tapon N. The Hippo pathway regulates intestinal stem cell proliferation during Drosophila adult midgut regeneration. Development. 2010;137(24):4147–4158. doi: 10.1242/dev.052506. PubMed DOI PMC
Karpowicz P, Perez J, Perrimon N. The Hippo tumor suppressor pathway regulates intestinal stem cell regeneration. Development. 2010;137(24):4135–4145. doi: 10.1242/dev.060483. PubMed DOI PMC
Burnstock G, Di Virgilio F. Purinergic signalling and cancer. Purinergic Signal. 2013;9(4):491–540. doi: 10.1007/s11302-013-9372-5. PubMed DOI PMC
Ohta A, Gorelik E, Prasad SJ, Ronchese F, Lukashev D, Wong MKK, Huang XJ, Caldwell S, Liu KB, Smith P, Chen JF, Jackson EK, Apasov S, Abrams S, Sitkovsky M (2006) A2A adenosine receptor protects tumors from antitumor T cells. P Natl Acad Sci USA 103 (35):13132–13137 PubMed PMC