-
Je něco špatně v tomto záznamu ?
Bayesian techniques for analyzing group differences in the Iowa Gambling Task: A case study of intuitive and deliberate decision-makers
H. Steingroever, T. Pachur, M. Šmíra, MD. Lee,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, Research Support, U.S. Gov't, Non-P.H.S., přehledy
NLK
Free Medical Journals
od 2001 do Před 2 roky
ProQuest Central
od 2011-02-01 do Před 1 rokem
Medline Complete (EBSCOhost)
od 2011-02-01 do Před 1 rokem
Health & Medicine (ProQuest)
od 2011-02-01 do Před 1 rokem
Psychology Database (ProQuest)
od 2011-02-01 do Před 1 rokem
- MeSH
- Bayesova věta * MeSH
- exekutivní funkce fyziologie MeSH
- interpretace statistických dat * MeSH
- lidé MeSH
- neuropsychologické testy * MeSH
- posilování (psychologie) * MeSH
- psychologické modely * MeSH
- rozhodování fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
The Iowa Gambling Task (IGT) is one of the most popular experimental paradigms for comparing complex decision-making across groups. Most commonly, IGT behavior is analyzed using frequentist tests to compare performance across groups, and to compare inferred parameters of cognitive models developed for the IGT. Here, we present a Bayesian alternative based on Bayesian repeated-measures ANOVA for comparing performance, and a suite of three complementary model-based methods for assessing the cognitive processes underlying IGT performance. The three model-based methods involve Bayesian hierarchical parameter estimation, Bayes factor model comparison, and Bayesian latent-mixture modeling. We illustrate these Bayesian methods by applying them to test the extent to which differences in intuitive versus deliberate decision style are associated with differences in IGT performance. The results show that intuitive and deliberate decision-makers behave similarly on the IGT, and the modeling analyses consistently suggest that both groups of decision-makers rely on similar cognitive processes. Our results challenge the notion that individual differences in intuitive and deliberate decision styles have a broad impact on decision-making. They also highlight the advantages of Bayesian methods, especially their ability to quantify evidence in favor of the null hypothesis, and that they allow model-based analyses to incorporate hierarchical and latent-mixture structures.
Center for Adaptive Rationality Max Planck Institute for Human Development Berlin Germany
Department of Psychology University of Amsterdam PO Box 15906 1001 NK Amsterdam The Netherlands
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19013132
- 003
- CZ-PrNML
- 005
- 20190416111009.0
- 007
- ta
- 008
- 190405s2018 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.3758/s13423-017-1331-7 $2 doi
- 035 __
- $a (PubMed)28685273
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Steingroever, Helen $u Department of Psychology, University of Amsterdam, PO Box 15906, 1001 NK, Amsterdam, The Netherlands. helen.steingroever@gmail.com.
- 245 10
- $a Bayesian techniques for analyzing group differences in the Iowa Gambling Task: A case study of intuitive and deliberate decision-makers / $c H. Steingroever, T. Pachur, M. Šmíra, MD. Lee,
- 520 9_
- $a The Iowa Gambling Task (IGT) is one of the most popular experimental paradigms for comparing complex decision-making across groups. Most commonly, IGT behavior is analyzed using frequentist tests to compare performance across groups, and to compare inferred parameters of cognitive models developed for the IGT. Here, we present a Bayesian alternative based on Bayesian repeated-measures ANOVA for comparing performance, and a suite of three complementary model-based methods for assessing the cognitive processes underlying IGT performance. The three model-based methods involve Bayesian hierarchical parameter estimation, Bayes factor model comparison, and Bayesian latent-mixture modeling. We illustrate these Bayesian methods by applying them to test the extent to which differences in intuitive versus deliberate decision style are associated with differences in IGT performance. The results show that intuitive and deliberate decision-makers behave similarly on the IGT, and the modeling analyses consistently suggest that both groups of decision-makers rely on similar cognitive processes. Our results challenge the notion that individual differences in intuitive and deliberate decision styles have a broad impact on decision-making. They also highlight the advantages of Bayesian methods, especially their ability to quantify evidence in favor of the null hypothesis, and that they allow model-based analyses to incorporate hierarchical and latent-mixture structures.
- 650 12
- $a Bayesova věta $7 D001499
- 650 12
- $a interpretace statistických dat $7 D003627
- 650 _2
- $a rozhodování $x fyziologie $7 D003657
- 650 _2
- $a exekutivní funkce $x fyziologie $7 D056344
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a psychologické modely $7 D008960
- 650 12
- $a neuropsychologické testy $7 D009483
- 650 12
- $a posilování (psychologie) $7 D012054
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
- 655 _2
- $a přehledy $7 D016454
- 700 1_
- $a Pachur, Thorsten $u Center for Adaptive Rationality, Max Planck Institute for Human Development, Berlin, Germany.
- 700 1_
- $a Šmíra, Martin $u Department of Psychology, University of Amsterdam, PO Box 15906, 1001 NK, Amsterdam, The Netherlands. Masaryk University, Brno, Czech Republic.
- 700 1_
- $a Lee, Michael D $u University of California, Irvine, CA, USA.
- 773 0_
- $w MED00006260 $t Psychonomic bulletin & review $x 1531-5320 $g Roč. 25, č. 3 (2018), s. 951-970
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/28685273 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20190405 $b ABA008
- 991 __
- $a 20190416111034 $b ABA008
- 999 __
- $a ok $b bmc $g 1392442 $s 1051437
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 25 $c 3 $d 951-970 $i 1531-5320 $m Psychonomic bulletin & review $n Psychon Bull Rev $x MED00006260
- LZP __
- $a Pubmed-20190405