Kaposi sarcoma-associated herpesvirus vIRF-3 protein binds to F-box of Skp2 protein and acts as a regulator of c-Myc protein function and stability
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
22453922
PubMed Central
PMC3351320
DOI
10.1074/jbc.m111.335216
PII: S0021-9258(20)60758-X
Knihovny.cz E-zdroje
- MeSH
- genetická transkripce genetika MeSH
- HEK293 buňky MeSH
- HeLa buňky MeSH
- hyperplazie velkých lymfatických uzlin genetika metabolismus virologie MeSH
- interferonové regulační faktory genetika metabolismus MeSH
- lidé MeSH
- lidský herpesvirus 8 genetika metabolismus MeSH
- lymfocyty metabolismus virologie MeSH
- proteiny asociované s kinázou S-fáze genetika metabolismus MeSH
- protoonkogenní proteiny c-myc genetika metabolismus MeSH
- stabilita proteinů MeSH
- ubikvitinace genetika MeSH
- vazba proteinů MeSH
- virové proteiny genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- interferonové regulační faktory MeSH
- MYC protein, human MeSH Prohlížeč
- proteiny asociované s kinázou S-fáze MeSH
- protoonkogenní proteiny c-myc MeSH
- viral interferon regulatory factors MeSH Prohlížeč
- virové proteiny MeSH
The Kaposi sarcoma-associated herpesvirus (KSHV) has been linked to Kaposi sarcoma, body cavity-based lymphoma, and Castleman disease. vIRF-3 is a KSHV latent gene that is critical for proliferation of KSHV-positive lymphoid cells. Furthermore, vIRF-3 contributes to KSHV-associated pathogenesis by stimulating c-Myc transcription activity. Here we show that vIRF-3 can associate with Skp2, a key component of the SCF(skp2) ubiquitin ligase complex. Skp2 is a transcriptional co-factor for c-Myc that was shown to regulate the stability of c-Myc protein as well as c-Myc-dependent transcription. In this study, we show that vIRF-3 binds to the F-box of Skp2 and recruits it to c-Myc-regulated promoters to activate c-Myc-dependent transcription. Additionally, cells overexpressing vIRF-3 exhibit higher levels of c-Myc ubiquitylation, suggesting that ubiquitylation is necessary for c-Myc-mediated transcription. Moreover, vIRF-3 can stabilize the c-Myc protein by increasing its half-life. Collectively, these results indicate that vIRF-3 can effectively manipulate c-Myc stability and function and thus contribute to c-Myc-induced KSHV-associated lymphomagenesis.
Zobrazit více v PubMed
Moore P. S., Gao S. J., Dominguez G., Cesarman E., Lungu O., Knowles D. M., Garber R., Pellett P. E., McGeoch D. J., Chang Y. (1996) Primary characterization of a herpesvirus agent associated with Kaposi's sarcomae. J. Virol. 70, 549–558 PubMed PMC
Lee H. R., Kim M. H., Lee J. S., Liang C., Jung J. U. (2009) Viral interferon regulatory factors. J. Interferon Cytokine Res. 29, 621–627 PubMed PMC
Lubyova B., Pitha P. M. (2000) Characterization of a novel human herpesvirus 8-encoded protein, vIRF-3, that shows homology to viral and cellular interferon regulatory factors. J. Virol. 74, 8194–8201 PubMed PMC
Rivas C., Thlick A. E., Parravicini C., Moore P. S., Chang Y. (2001) Kaposi sarcoma-associated herpesvirus LANA2 is a B-cell-specific latent viral protein that inhibits p53. J. Virol. 75, 429–438 PubMed PMC
Cesarman E., Chang Y., Moore P. S., Said J. W., Knowles D. M. (1995) Kaposi sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N. Engl. J. Med. 332, 1186–1191 PubMed
Dupin N., Diss T. L., Kellam P., Tulliez M., Du M. Q., Sicard D., Weiss R. A., Isaacson P. G., Boshoff C. (2000) HHV-8 is associated with a plasmablastic variant of Castleman disease that is linked to HHV-8-positive plasmablastic lymphoma. Blood 95, 1406–1412 PubMed
Schulz T. F. (2006) The pleiotropic effects of Kaposi sarcoma herpesvirus. J. Pathol. 208, 187–198 PubMed
Soulier J., Grollet L., Oksenhendler E., Cacoub P., Cazals-Hatem D., Babinet P., d'Agay M. F., Clauvel J. P., Raphael M., Degos L. (1995) Kaposi sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman disease. Blood 86, 1276–1280 PubMed
Seo T., Park J., Lim C., Choe J. (2004) Inhibition of nuclear factor κB activity by viral interferon regulatory factor 3 of Kaposi sarcoma-associated herpesvirus. Oncogene 23, 6146–6155 PubMed
Wies E., Mori Y., Hahn A., Kremmer E., Stürzl M., Fleckenstein B., Neipel F. (2008) The viral interferon-regulatory factor-3 is required for the survival of KSHV-infected primary effusion lymphoma cells. Blood 111, 320–327 PubMed
Lubyova B., Kellum M. J., Frisancho J. A., Pitha P. M. (2007) Stimulation of c-Myc transcriptional activity by vIRF-3 of Kaposi sarcoma-associated herpesvirus. J. Biol. Chem. 282, 31944–31953 PubMed
Grandori C., Cowley S. M., James L. P., Eisenman R. N. (2000) The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu. Rev. Cell Dev. Biol. 16, 653–699 PubMed
Alexandrow M. G., Kawabata M., Aakre M., Moses H. L. (1995) Overexpression of the c-Myc oncoprotein blocks the growth-inhibitory response but is required for the mitogenic effects of transforming growth factor β1. Proc. Natl. Acad. Sci. U.S.A. 92, 3239–3243 PubMed PMC
Hermeking H., Funk J. O., Reichert M., Ellwart J. W., Eick D. (1995) Abrogation of p53-induced cell cycle arrest by c-Myc: evidence for an inhibitor of p21WAF1/CIP1/SDI1. Oncogene 11, 1409–1415 PubMed
Hann S. R., Eisenman R. N. (1984) Proteins encoded by the human c-myc oncogene: differential expression in neoplastic cells. Mol. Cell. Biol. 4, 2486–2497 PubMed PMC
Kim S. Y., Herbst A., Tworkowski K. A., Salghetti S. E., Tansey W. P. (2003) Skp2 regulates Myc protein stability and activity. Mol. Cell 11, 1177–1188 PubMed
von der Lehr N., Johansson S., Wu S., Bahram F., Castell A., Cetinkaya C., Hydbring P., Weidung I., Nakayama K., Nakayama K. I., Söderberg O., Kerppola T. K., Larsson L. G. (2003) The F-box protein Skp2 participates in c-Myc proteasomal degradation and acts as a cofactor for c-Myc-regulated transcription. Mol. Cell 11, 1189–1200 PubMed
Jin J., Harper J. W. (2003) A license to kill: transcriptional activation and enhanced turnover of Myc by the SCFSkp2 ubiquitin ligase. Cancer Cell 3, 517–518 PubMed
von der Lehr N., Johansson S., Larsson L. G. (2003) Implication of the ubiquitin/proteasome system in Myc-regulated transcription. Cell Cycle 2, 403–407 PubMed
Frescas D., Pagano M. (2008) Deregulated proteolysis by the F-box proteins SKP2 and β-TrCP: tipping the scales of cancer. Nat. Rev. Cancer 8, 438–449 PubMed PMC
Gstaiger M., Jordan R., Lim M., Catzavelos C., Mestan J., Slingerland J., Krek W. (2001) Skp2 is oncogenic and overexpressed in human cancers. Proc. Natl. Acad. Sci. U.S.A. 98, 5043–5048 PubMed PMC
Latres E., Chiarle R., Schulman B. A., Pavletich N. P., Pellicer A., Inghirami G., Pagano M. (2001) Role of the F-box protein Skp2 in lymphomagenesis. Proc. Natl. Acad. Sci. U.S.A. 98, 2515–2520 PubMed PMC
Lubyova B., Kellum M. J., Frisancho A. J., Pitha P. M. (2004) Kaposi sarcoma-associated herpesvirus-encoded vIRF-3 stimulates the transcriptional activity of cellular IRF-3 and IRF-7. J. Biol. Chem. 279, 7643–7654 PubMed
Au W. C., Pitha P. M. (2001) Recruitment of multiple interferon regulatory factors and histone acetyltransferase to the transcriptionally active interferon a promoters. J. Biol. Chem. 276, 41629–41637 PubMed
Livak K. J., Schmittgen T. D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 25, 402–408 PubMed
Salghetti S. E., Kim S. Y., Tansey W. P. (1999) Destruction of Myc by ubiquitin-mediated proteolysis: cancer-associated and transforming mutations stabilize Myc. EMBO J. 18, 717–726 PubMed PMC
Blackwood E. M., Eisenman R. N. (1991) Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science 251, 1211–1217 PubMed
Prendergast G. C., Ziff E. B. (1991) Methylation-sensitive sequence-specific DNA binding by the c-Myc basic region. Science 251, 186–189 PubMed
Lüscher B., Larsson L. G. (1999) The basic region/helix-loop-helix/leucine zipper domain of Myc proto-oncoproteins: function and regulation. Oncogene 18, 2955–2966 PubMed
Hermeking H., Rago C., Schuhmacher M., Li Q., Barrett J. F., Obaya A. J., O'Connell B. C., Mateyak M. K., Tam W., Kohlhuber F., Dang C. V., Sedivy J. M., Eick D., Vogelstein B., Kinzler K. W. (2000) Identification of CDK4 as a target of c-MYC. Proc. Natl. Acad. Sci. U.S.A. 97, 2229–2234 PubMed PMC
Joo C. H., Shin Y. C., Gack M., Wu L., Levy D., Jung J. U. (2007) Inhibition of interferon regulatory factor 7 (IRF7)-mediated interferon signal transduction by the Kaposi sarcoma-associated herpesvirus viral IRF homolog vIRF3. J. Virol. 81, 8282–8292 PubMed PMC
Wies E., Hahn A. S., Schmidt K., Viebahn C., Rohland N., Lux A., Schellhorn T., Holzer A., Jung J. U., Neipel F. (2009) The Kaposi sarcoma-associated herpesvirus-encoded vIRF-3 inhibits cellular IRF-5. J. Biol. Chem. 284, 8525–8538 PubMed PMC
Keller U. B., Old J. B., Dorsey F. C., Nilsson J. A., Nilsson L., MacLean K. H., Chung L., Yang C., Spruck C., Boyd K., Reed S. I., Cleveland J. L. (2007) Myc targets Cks1 to provoke the suppression of p27Kip1, proliferation and lymphomagenesis. EMBO J. 26, 2562–2574 PubMed PMC
Barrios C., Castresana J. S., Ruiz J., Kreicbergs A. (1994) Amplification of the c-myc proto-oncogene in soft tissue sarcomas. Oncology 51, 13–17 PubMed
Battey J., Moulding C., Taub R., Murphy W., Stewart T., Potter H., Lenoir G., Leder P. (1983) The human c-myc oncogene: structural consequences of translocation into the IgH locus in Burkitt lymphoma. Cell 34, 779–787 PubMed
Gregory M. A., Hann S. R. (2000) c-Myc proteolysis by the ubiquitin-proteasome pathway: stabilization of c-Myc in Burkitt lymphoma cells. Mol. Cell. Biol. 20, 2423–2435 PubMed PMC
Carbone A., Cilia A. M., Gloghini A., Capello D., Todesco M., Quattrone S., Volpe R., Gaidano G. (1998) Establishment and characterization of EBV-positive and EBV-negative primary effusion lymphoma cell lines harboring human herpesvirus type-8. Br. J. Haematol. 102, 1081–1089 PubMed
Arvanitakis L., Mesri E. A., Nador R. G., Said J. W., Asch A. S., Knowles D. M., Cesarman E. (1996) Establishment and characterization of a primary effusion (body cavity-based) lymphoma cell line (BC-3) harboring Kaposi sarcoma-associated herpesvirus (KSHV/HHV-8) in the absence of Epstein-Barr virus. Blood 88, 2648–2654 PubMed
Gaidano G., Pastore C., Gloghini A., Volpe G., Ghia P., Saglio G., Carbone A. (1996) AIDS-related non-Hodgkin lymphomas: molecular genetics, viral infection, and cytokine deregulation. Acta Haematol. 95, 193–198 PubMed
Ahmad A., Groshong J. S., Matta H., Schamus S., Punj V., Robinson L. J., Gill P. S., Chaudhary P. M. (2010) Kaposi sarcoma-associated herpesvirus-encoded viral FLICE inhibitory protein (vFLIP) K13 cooperates with Myc to promote lymphoma in mice. Cancer Biol. Ther. 10, 1033–1040 PubMed PMC
Bubman D., Guasparri I., Cesarman E. (2007) Deregulation of c-Myc in primary effusion lymphoma by Kaposi sarcoma herpesvirus latency-associated nuclear antigen. Oncogene 26, 4979–4986 PubMed
Liu J., Martin H. J., Liao G., Hayward S. D. (2007) The Kaposi sarcoma-associated herpesvirus LANA protein stabilizes and activates c-Myc. J. Virol. 81, 10451–10459 PubMed PMC
Li X., Chen S., Feng J., Deng H., Sun R. (2010) Myc is required for the maintenance of Kaposi sarcoma-associated herpesvirus latency. J. Virol. 84, 8945–8948 PubMed PMC
Bajaj B. G., Murakami M., Cai Q., Verma S. C., Lan K., Robertson E. S. (2008) Epstein-Barr virus nuclear antigen 3C interacts with and enhances the stability of the c-Myc oncoprotein. J. Virol. 82, 4082–4090 PubMed PMC
Kalra N., Kumar V. (2006) The X protein of hepatitis B virus binds to the F box protein Skp2 and inhibits the ubiquitination and proteasomal degradation of c-Myc. FEBS Lett. 580, 431–436 PubMed