p53 tumor suppressor protein stability and transcriptional activity are targeted by Kaposi's sarcoma-associated herpesvirus-encoded viral interferon regulatory factor 3
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
24248600
PubMed Central
PMC3911520
DOI
10.1128/mcb.01011-13
PII: MCB.01011-13
Knihovny.cz E-resources
- MeSH
- Apoptosis genetics MeSH
- Phosphorylation MeSH
- HCT116 Cells MeSH
- HEK293 Cells MeSH
- Cyclin-Dependent Kinase Inhibitor p21 genetics metabolism MeSH
- Interferon Regulatory Factors genetics metabolism MeSH
- Humans MeSH
- Herpesvirus 8, Human genetics metabolism MeSH
- Protein Multimerization MeSH
- Mutation MeSH
- Cell Line, Tumor MeSH
- Tumor Suppressor Protein p53 chemistry genetics metabolism MeSH
- Reverse Transcriptase Polymerase Chain Reaction MeSH
- Promoter Regions, Genetic genetics MeSH
- bcl-2-Associated X Protein genetics metabolism MeSH
- Gene Expression Regulation, Neoplastic MeSH
- RNA Interference MeSH
- Serine genetics metabolism MeSH
- Protein Stability MeSH
- Transfection MeSH
- Ubiquitination MeSH
- Protein Binding MeSH
- Viral Proteins genetics metabolism MeSH
- Blotting, Western MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- BAX protein, human MeSH Browser
- CDKN1A protein, human MeSH Browser
- Cyclin-Dependent Kinase Inhibitor p21 MeSH
- Interferon Regulatory Factors MeSH
- Tumor Suppressor Protein p53 MeSH
- bcl-2-Associated X Protein MeSH
- Serine MeSH
- viral interferon regulatory factors MeSH Browser
- Viral Proteins MeSH
Viruses have developed numerous strategies to counteract the host cell defense. Kaposi's sarcoma-associated herpesvirus (KSHV) is a DNA tumor virus linked to the development of Kaposi's sarcoma, Castleman's disease, and primary effusion lymphoma (PEL). The virus-encoded viral interferon regulatory factor 3 (vIRF-3) gene is a latent gene which is involved in the regulation of apoptosis, cell cycle, antiviral immunity, and tumorigenesis. vIRF-3 was shown to interact with p53 and inhibit p53-mediated apoptosis. However, the molecular mechanism underlying this phenomenon has not been established. Here, we show that vIRF-3 associates with the DNA-binding domain of p53, inhibits p53 phosphorylation on serine residues S15 and S20, and antagonizes p53 oligomerization and the DNA-binding affinity. Furthermore, vIRF-3 destabilizes p53 protein by increasing the levels of p53 polyubiquitination and targeting p53 for proteasome-mediated degradation. Consequently, vIRF-3 attenuates p53-mediated transcription of the growth-regulatory p21 gene. These effects of vIRF-3 are of biological relevance since the knockdown of vIRF-3 expression in KSHV-positive BC-3 cells, derived from PEL, leads to an increase in p53 phosphorylation, enhancement of p53 stability, and activation of p21 gene transcription. Collectively, these data suggest that KSHV evolved an efficient mechanism to downregulate p53 function and thus facilitate uncontrolled cell proliferation and tumor growth.
See more in PubMed
Moore PS, Gao SJ, Dominguez G, Cesarman E, Lungu O, Knowles DM, Garber R, Pellett PE, McGeoch DJ, Chang Y. 1996. Primary characterization of a herpesvirus agent associated with Kaposi's sarcomae. J. Virol. 70:549–558 PubMed PMC
Cesarman E, Chang Y, Moore PS, Said JW, Knowles DM. 1995. Kaposi's sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N. Engl. J. Med. 332:1186–1191. 10.1056/NEJM199505043321802 PubMed DOI
Dupin N, Diss TL, Kellam P, Tulliez M, Du MQ, Sicard D, Weiss RA, Isaacson PG, Boshoff C. 2000. HHV-8 is associated with a plasmablastic variant of Castleman disease that is linked to HHV-8-positive plasmablastic lymphoma. Blood 95:1406–1412 PubMed
Soulier J, Grollet L, Oksenhendler E, Cacoub P, Cazals-Hatem D, Babinet P, d'Agay M-F, Clauvel J-P, Raphael M, Degos L, Sigaux F. 1995. Kaposi's sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman's disease. Blood 86:1276–1280 PubMed
Dittmer D, Lagunoff M, Renne R, Staskus K, Haase A, Ganem D. 1998. A cluster of latently expressed genes in Kaposi's sarcoma-associated herpesvirus. J. Virol. 72:8309–8315 PubMed PMC
Sun R, Lin SF, Staskus K, Gradoville L, Grogan E, Haase A, Miller G. 1999. Kinetics of Kaposi's sarcoma-associated herpesvirus gene expression. J. Virol. 73:2232–2242 PubMed PMC
Russo JJ, Bohenzky RA, Chien MC, Chen J, Yan M, Maddalena D, Parry JP, Peruzzi D, Edelman IS, Chang Y, Moore PS. 1996. Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc. Natl. Acad. Sci. U. S. A. 93:14862–14867. 10.1073/pnas.93.25.14862 PubMed DOI PMC
Lubyova B, Pitha PM. 2000. Characterization of a novel human herpesvirus 8-encoded protein, vIRF-3, that shows homology to viral and cellular interferon regulatory factors. J. Virol. 74:8194–8201. 10.1128/JVI.74.17.8194-8201.2000 PubMed DOI PMC
Rivas C, Thlick A-E, Parravicini C, Moore PS, Chang Y. 2001. Kaposi's sarcoma-associated herpesvirus LANA2 is a B-cell-specific latent viral protein that inhibits p53. J. Virol. 75:429–438. 10.1128/JVI.75.1.429-438.2001 PubMed DOI PMC
Cunningham C, Barnard S, Blackbourn DJ, Davison AJ. 2003. Transcription mapping of human herpesvirus 8 genes encoding viral interferon regulatory factors. J. Gen. Virol. 84:1471–1483. 10.1099/vir.0.19015-0 PubMed DOI
Fakhari FD, Dittmer DP. 2002. Charting latency transcripts in Kaposi's sarcoma-associated herpesvirus by whole-genome real-time quantitative PCR. J. Virol. 76:6213–6223. 10.1128/JVI.76.12.6213-6223.2002 PubMed DOI PMC
Wies E, Mori Y, Hahn A, Kremmer E, Sturzl M, Fleckenstein B, Neipel F. 2008. The viral interferon-regulatory factor-3 is required for the survival of KSHV-infected primary effusion lymphoma cells. Blood 111:320–327. 10.1182/blood-2007-05-092288 PubMed DOI
Baresova P, Pitha PM, Lubyova B. 2013. Distinct roles of Kaposi's sarcoma-associated herpesvirus-encoded viral interferon regulatory factors in inflammatory response and cancer. J. Virol. 87:9398–9410. 10.1128/JVI.03315-12 PubMed DOI PMC
Munoz-Fontela C, Marcos-Villar L, Gallego P, Arroyo J, Da Costa M, Pomeranz KM, Lam EW, Rivas C. 2007. Latent protein LANA2 from Kaposi's sarcoma-associated herpesvirus interacts with 14-3-3 proteins and inhibits FOXO3a transcription factor. J. Virol. 81:1511–1516. 10.1128/JVI.01816-06 PubMed DOI PMC
Marcos-Villar L, Lopitz-Otsoa F, Gallego P, Munoz-Fontela C, Gonzalez-Santamaria J, Campagna M, Shou-Jiang G, Rodriguez MS, Rivas C. 2009. Kaposi's sarcoma-associated herpesvirus protein LANA2 disrupts PML oncogenic domains and inhibits PML-mediated transcriptional repression of the survivin gene. J. Virol. 83:8849–8858. 10.1128/JVI.00339-09 PubMed DOI PMC
Shin YC, Joo CH, Gack MU, Lee HR, Jung JU. 2008. Kaposi's sarcoma-associated herpesvirus viral IFN regulatory factor 3 stabilizes hypoxia-inducible factor-1 alpha to induce vascular endothelial growth factor expression. Cancer Res. 68:1751–1759. 10.1158/0008-5472.CAN-07-2766 PubMed DOI
Lubyova B, Kellum MJ, Frisancho JA, Pitha PM. 2007. Stimulation of c-Myc transcriptional activity by vIRF-3 of Kaposi sarcoma-associated herpesvirus. J. Biol. Chem. 282:31944–31953. 10.1074/jbc.M706430200 PubMed DOI
Baresova P, Pitha PM, Lubyova B. 2012. Kaposi sarcoma-associated herpesvirus vIRF-3 protein binds to F-box of Skp2 protein and acts as a regulator of c-Myc protein function and stability. J. Biol. Chem. 287:16199–16208. 10.1074/jbc.M111.335216 PubMed DOI PMC
Levine AJ. 1997. p53, the cellular gatekeeper for growth and division. Cell 88:323–331. 10.1016/S0092-8674(00)81871-1 PubMed DOI
Flatt PM, Polyak K, Tang LJ, Scatena CD, Westfall MD, Rubinstein LA, Yu J, Kinzler KW, Vogelstein B, Hill DE, Pietenpol JA. 2000. p53-dependent expression of PIG3 during proliferation, genotoxic stress, and reversible growth arrest. Cancer Lett. 156:63–72. 10.1016/S0304-3835(00)00441-9 PubMed DOI
Hollstein M, Shomer B, Greenblatt M, Soussi T, Hovig E, Montesano R, Harris CC. 1996. Somatic point mutations in the p53 gene of human tumors and cell lines: updated compilation. Nucleic Acids Res. 24:141–146. 10.1093/nar/24.1.141 PubMed DOI PMC
Kruse JP, Gu W. 2009. Modes of p53 regulation. Cell 137:609–622. 10.1016/j.cell.2009.04.050 PubMed DOI PMC
Maltzman W, Czyzyk L. 1984. UV irradiation stimulates levels of p53 cellular tumor antigen in nontransformed mouse cells. Mol. Cell Biol. 4:1689–1694 PubMed PMC
Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW. 1991. Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 51:6304–6311 PubMed
Ryan KM, Phillips AC, Vousden KH. 2001. Regulation and function of the p53 tumor suppressor protein. Curr. Opin. Cell Biol. 13:332–337. 10.1016/S0955-0674(00)00216-7 PubMed DOI
Shieh SY, Ikeda M, Taya Y, Prives C. 1997. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91:325–334. 10.1016/S0092-8674(00)80416-X PubMed DOI
Lees-Miller SP, Chen YR, Anderson CW. 1990. Human cells contain a DNA-activated protein kinase that phosphorylates simian virus 40 T antigen, mouse p53, and the human Ku autoantigen. Mol. Cell. Biol. 10:6472–6481 PubMed PMC
Banin S, Moyal L, Shieh S, Taya Y, Anderson CW, Chessa L, Smorodinsky NI, Prives C, Reiss Y, Shiloh Y, Ziv Y. 1998. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 281:1674–1677. 10.1126/science.281.5383.1674 PubMed DOI
Hirao A, Kong YY, Matsuoka S, Wakeham A, Ruland J, Yoshida H, Liu D, Elledge SJ, Mak TW. 2000. DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 287:1824–1827. 10.1126/science.287.5459.1824 PubMed DOI
Teufel DP, Bycroft M, Fersht AR. 2009. Regulation by phosphorylation of the relative affinities of the N-terminal transactivation domains of p53 for p300 domains and Mdm2. Oncogene 28:2112–2118. 10.1038/onc.2009.71 PubMed DOI PMC
Dumaz N, Meek DW. 1999. Serine 15 phosphorylation stimulates p53 transactivation but does not directly influence interaction with HDM2. EMBO J. 18:7002–7010. 10.1093/emboj/18.24.7002 PubMed DOI PMC
Sakaguchi K, Sakamoto H, Lewis MS, Anderson CW, Erickson JW, Appella E, Xie D. 1997. Phosphorylation of serine 392 stabilizes the tetramer formation of tumor suppressor protein p53. Biochemistry 36:10117–10124. 10.1021/bi970759w PubMed DOI
McLure KG, Lee PW. 1998. How p53 binds DNA as a tetramer. EMBO J. 17:3342–3350. 10.1093/emboj/17.12.3342 PubMed DOI PMC
Poon GM, Brokx RD, Sung M, Gariepy J. 2007. Tandem dimerization of the human p53 tetramerization domain stabilizes a primary dimer intermediate and dramatically enhances its oligomeric stability. J. Mol. Biol. 365:1217–1231. 10.1016/j.jmb.2006.10.051 PubMed DOI
Li M, Luo J, Brooks CL, Gu W. 2002. Acetylation of p53 inhibits its ubiquitination by Mdm2. J. Biol. Chem. 277:50607–50611. 10.1074/jbc.C200578200 PubMed DOI
Meek DW, Knippschild U. 2003. Posttranslational modification of MDM2. Mol. Cancer Res. 1:1017–1026 PubMed
Cummins JM, Vogelstein B. 2004. HAUSP is required for p53 destabilization. Cell Cycle 3:689–692. 10.4161/cc.3.6.924 PubMed DOI
Li M, Brooks CL, Kon N, Gu W. 2004. A dynamic role of HAUSP in the p53-Mdm2 pathway. Mol. Cell 13:879–886. 10.1016/S1097-2765(04)00157-1 PubMed DOI
Li M, Chen D, Shiloh A, Luo J, Nikolaev AY, Qin J, Gu W. 2002. Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. Nature 416:648–653. 10.1038/nature737 PubMed DOI
Hu M, Gu L, Li M, Jeffrey PD, Gu W, Shi Y. 2006. Structural basis of competitive recognition of p53 and MDM2 by HAUSP/USP7: implications for the regulation of the p53-MDM2 pathway. PLoS Biol. 4:e27. 10.1371/journal.pbio.0040027 PubMed DOI PMC
Brooks CL, Li M, Hu M, Shi Y, Gu W. 2007. The p53–Mdm2–HAUSP complex is involved in p53 stabilization by HAUSP. Oncogene 26:7262–7266. 10.1038/sj.onc.1210531 PubMed DOI PMC
Meulmeester E, Pereg Y, Shiloh Y, Jochemsen AG. 2005. ATM-mediated phosphorylations inhibit Mdmx/Mdm2 stabilization by HAUSP in favor of p53 activation. Cell Cycle 4:1166–1170. 10.4161/cc.4.9.1981 PubMed DOI
Wu X, Bayle JH, Olson D, Levine AJ. 1993. The p53-mdm-2 autoregulatory feedback loop. Genes Dev. 7:1126–1132. 10.1101/gad.7.7a.1126 PubMed DOI
Lubyova B, Kellum MJ, Frisancho AJ, Pitha PM. 2004. Kaposi's sarcoma-associated herpesvirus-encoded vIRF-3 stimulates the transcriptional activity of cellular IRF-3 and IRF-7. J. Biol. Chem. 279:7643–7654. 10.1074/jbc.M309485200 PubMed DOI
Fulmer-Smentek SB, Francke U. 2001. Association of acetylated histones with paternally expressed genes in the Prader-Willi deletion region. Hum. Mol. Genet. 10:645–652. 10.1093/hmg/10.6.645 PubMed DOI
Lin J, Chen J, Elenbaas B, Levine AJ. 1994. Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kD protein. Genes Dev. 8:1235–1246. 10.1101/gad.8.10.1235 PubMed DOI
Lin J, Jin X, Page C, Sondak VK, Jiang G, Reynolds RK. 2000. A modified p53 overcomes mdm2-mediated oncogenic transformation: a potential cancer therapeutic agent. Cancer Res. 60:5895–5901 PubMed
Dai C, Gu W. 2010. p53 post-translational modification: deregulated in tumorigenesis. Trends Mol. Med. 16:528–536. 10.1016/j.molmed.2010.09.002 PubMed DOI PMC
Toledo F, Wahl GM. 2006. Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat. Rev. Cancer 6:909–923. 10.1038/nrc2012 PubMed DOI
el-Deiry WS, Harper JW, O'Connor PM, Velculescu VE, Canman CE, Jackman J, Pietenpol JA, Burrell M, Hill DE, Wang Y, Wiman KG, Mercer WE, Kastan MB, Kohn KW, Elledge SJ, Kinzler KW, Vogelstein B. 1994. WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res. 54:1169–1174 PubMed
el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B. 1993. WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–825. 10.1016/0092-8674(93)90500-P PubMed DOI
Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R, Beach D. 1993. p21 is a universal inhibitor of cyclin kinases. Nature 366:701–704. 10.1038/366701a0 PubMed DOI
Di Leonardo A, Linke SP, Clarkin K, Wahl GM. 1994. DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Genes Dev. 8:2540–2551. 10.1101/gad.8.21.2540 PubMed DOI
Beckerman R, Prives C. 2010. Transcriptional regulation by p53. Cold Spring Harb. Perspect. Biol. 2:a000935. 10.1101/cshperspect.a000935 PubMed DOI PMC
Love IM, Sekaric P, Shi D, Grossman SR, Androphy EJ. 2012. The histone acetyltransferase PCAF regulates p21 transcription through stress-induced acetylation of histone H3. Cell Cycle 11:2458–2466. 10.4161/cc.20864 PubMed DOI PMC
Chen J, Lin J, Levine AJ. 1995. Regulation of transcription functions of the p53 tumor suppressor by the mdm-2 oncogene. Mol. Med. 1:142–152 PubMed PMC
Miyashita T, Reed JC. 1995. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80:293–299. 10.1016/0092-8674(95)90412-3 PubMed DOI
Cianfrocca R, Muscolini M, Marzano V, Annibaldi A, Marinari B, Levrero M, Costanzo A, Tuosto L. 2008. RelA/NF-kappaB recruitment on the bax gene promoter antagonizes p73-dependent apoptosis in costimulated T cells. Cell Death Differ. 15:354–363. 10.1038/sj.cdd.4402264 PubMed DOI
Hollstein M, Sidransky D, Vogelstein B, Harris CC. 1991. p53 mutations in human cancers. Science 253:49–53. 10.1126/science.1905840 PubMed DOI
Boulanger E, Marchio A, Hong SS, Pineau P. 2009. Mutational analysis of TP53, PTEN, PIK3CA and CTNNB1/beta-catenin genes in human herpesvirus 8-associated primary effusion lymphoma. Haematologica 94:1170–1174. 10.3324/haematol.2009.007260 PubMed DOI PMC
Katano H, Sato Y, Sata T. 2001. Expression of p53 and human herpesvirus-8 (HHV-8)-encoded latency-associated nuclear antigen with inhibition of apoptosis in HHV-8-associated malignancies. Cancer 92:3076–3084. 10.1002/1097-0142(20011215)92:12<3076::AID-CNCR10117>3.0.CO;2-D PubMed DOI
Bakkenist CJ, Kastan MB. 2003. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421:499–506. 10.1038/nature01368 PubMed DOI
Caspari T. 2000. How to activate p53. Curr. Biol. 10:R315–R317. 10.1016/S0960-9822(00)00439-5 PubMed DOI
Vogelstein B, Lane D, Levine AJ. 2000. Surfing the p53 network. Nature 408:307–310. 10.1038/35042675 PubMed DOI
Xu Y. 2003. Regulation of p53 responses by post-translational modifications. Cell Death Differ. 10:400–403. 10.1038/sj.cdd.4401182 PubMed DOI
Appella E, Anderson CW. 2001. Post-translational modifications and activation of p53 by genotoxic stresses. Eur. J. Biochem. 268:2764–2772. 10.1046/j.1432-1327.2001.02225.x PubMed DOI
Lambert PF, Kashanchi F, Radonovich MF, Shiekhattar R, Brady JN. 1998. Phosphorylation of p53 serine 15 increases interaction with CBP. J. Biol. Chem. 273:33048–33053. 10.1074/jbc.273.49.33048 PubMed DOI
Sakaguchi K, Saito S, Higashimoto Y, Roy S, Anderson CW, Appella E. 2000. Damage-mediated phosphorylation of human p53 threonine 18 through a cascade mediated by a casein 1-like kinase. Effect on Mdm2 binding. J. Biol. Chem. 275:9278–9283. 10.1074/jbc.275.13.9278 PubMed DOI
Schon O, Friedler A, Bycroft M, Freund SM, Fersht AR. 2002. Molecular mechanism of the interaction between MDM2 and p53. J. Mol. Biol. 323:491–501. 10.1016/S0022-2836(02)00852-5 PubMed DOI
Saito S, Yamaguchi H, Higashimoto Y, Chao C, Xu Y, Fornace AJ, Jr, Appella E, Anderson CW. 2003. Phosphorylation site interdependence of human p53 post-translational modifications in response to stress. J. Biol. Chem. 278:37536–37544. 10.1074/jbc.M305135200 PubMed DOI
Wang J, Wiltshire T, Wang Y, Mikell C, Burks J, Cunningham C, Van Laar ES, Waters SJ, Reed E, Wang W. 2004. ATM-dependent CHK2 activation induced by anticancer agent, irofulven. J. Biol. Chem. 279:39584–39592. 10.1074/jbc.M400015200 PubMed DOI
Khosravi R, Maya R, Gottlieb T, Oren M, Shiloh Y, Shkedy D. 1999. Rapid ATM-dependent phosphorylation of MDM2 precedes p53 accumulation in response to DNA damage. Proc. Natl. Acad. Sci. U. S. A. 96:14973–14977. 10.1073/pnas.96.26.14973 PubMed DOI PMC
Maya R, Balass M, Kim ST, Shkedy D, Leal JF, Shifman O, Moas M, Buschmann T, Ronai Z, Shiloh Y, Kastan MB, Katzir E, Oren M. 2001. ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage. Genes Dev. 15:1067–1077. 10.1101/gad.886901 PubMed DOI PMC
Jeffrey PD, Gorina S, Pavletich NP. 1995. Crystal structure of the tetramerization domain of the p53 tumor suppressor at 1.7 angstroms. Science 267:1498–1502. 10.1126/science.7878469 PubMed DOI
Warnock LJ, Knox A, Mee TR, Raines SA, Milner J. 2008. Influence of tetramerisation on site-specific post-translational modifications of p53: comparison of human and murine p53 tumor suppressor protein. Cancer Biol. Ther. 7:1481–1489. 10.4161/cbt.7.9.6473 PubMed DOI
Lechner MS, Mack DH, Finicle AB, Crook T, Vousden KH, Laimins LA. 1992. Human papillomavirus E6 proteins bind p53 in vivo and abrogate p53-mediated repression of transcription. EMBO J. 11:3045–3052 PubMed PMC
Steegenga WT, van Laar T, Riteco N, Mandarino A, Shvarts A, van der Eb AJ, Jochemsen AG. 1996. Adenovirus E1A proteins inhibit activation of transcription by p53. Mol. Cell. Biol. 16:2101–2109 PubMed PMC
Yi F, Saha A, Murakami M, Kumar P, Knight JS, Cai Q, Choudhuri T, Robertson ES. 2009. Epstein-Barr virus nuclear antigen 3C targets p53 and modulates its transcriptional and apoptotic activities. Virology 388:236–247. 10.1016/j.virol.2009.03.027 PubMed DOI PMC
Shin YC, Nakamura H, Liang X, Feng P, Chang H, Kowalik TF, Jung JU. 2006. Inhibition of the ATM/p53 signal transduction pathway by Kaposi's sarcoma-associated herpesvirus interferon regulatory factor 1. J. Virol. 80:2257–2266. 10.1128/JVI.80.5.2257-2266.2006 PubMed DOI PMC
Nakamura H, Li M, Zarycki J, Jung JU. 2001. Inhibition of p53 tumor suppressor by viral interferon regulatory factor. J. Virol. 75:7572–7582. 10.1128/JVI.75.16.7572-7582.2001 PubMed DOI PMC
Seo T, Park J, Lee D, Hwang SG, Choe J. 2001. Viral interferon regulatory factor 1 of Kaposi's sarcoma-associated herpesvirus binds to p53 and represses p53-dependent transcription and apoptosis. J. Virol. 75:6193–6198. 10.1128/JVI.75.13.6193-6198.2001 PubMed DOI PMC
Lee HR, Toth Z, Shin YC, Lee JS, Chang H, Gu W, Oh TK, Kim MH, Jung JU. 2009. Kaposi's sarcoma-associated herpesvirus viral interferon regulatory factor 4 targets MDM2 to deregulate the p53 tumor suppressor pathway. J. Virol. 83:6739–6747. 10.1128/JVI.02353-08 PubMed DOI PMC
Lee HR, Choi WC, Lee S, Hwang J, Hwang E, Guchhait K, Haas J, Toth Z, Jeon YH, Oh TK, Kim MH, Jung JU. 2011. Bilateral inhibition of HAUSP deubiquitinase by a viral interferon regulatory factor protein. Nat. Struct. Mol. Biol. 18:1336–1344. 10.1038/nsmb.2142 PubMed DOI PMC
Chen W, Hilton IB, Staudt MR, Burd CE, Dittmer DP. 2010. Distinct p53, p53:LANA, and LANA complexes in Kaposi's sarcoma-associated herpesvirus lymphomas. J. Virol. 84:3898–3908. 10.1128/JVI.01321-09 PubMed DOI PMC
Cai QL, Knight JS, Verma SC, Zald P, Robertson ES. 2006. EC5S ubiquitin complex is recruited by KSHV latent antigen LANA for degradation of the VHL and p53 tumor suppressors. PLoS Pathog. 2:e116. 10.1371/journal.ppat.0020116 PubMed DOI PMC
Suzuki T, Isobe T, Kitagawa M, Ueda K. 2010. Kaposi's sarcoma-associated herpesvirus-encoded LANA positively affects on ubiquitylation of p53. Biochem. Biophys. Res. Commun. 403:194–197. 10.1016/j.bbrc.2010.11.004 PubMed DOI
Cai Q, Xiao B, Si H, Cervini A, Gao J, Lu J, Upadhyay SK, Verma SC, Robertson ES. 2012. Kaposi's sarcoma herpesvirus upregulates Aurora A expression to promote p53 phosphorylation and ubiquitylation. PLoS Pathog. 8:e1002566. 10.1371/journal.ppat.1002566 PubMed DOI PMC
Hu W, Feng Z, Levine AJ. 2012. The regulation of multiple p53 stress responses is mediated through MDM2. Genes Cancer 3:199–208. 10.1177/1947601912454734 PubMed DOI PMC