Unique mutational profile associated with a loss of TDG expression in the rectal cancer of a patient with a constitutional PMS2 deficiency
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu kazuistiky, časopisecké články, práce podpořená grantem
PubMed
22608206
PubMed Central
PMC3387372
DOI
10.1016/j.dnarep.2012.04.004
PII: S1568-7864(12)00097-3
Knihovny.cz E-zdroje
- MeSH
- adenosintrifosfatasy nedostatek genetika MeSH
- DNA vazebné proteiny nedostatek genetika MeSH
- enzymy opravy DNA nedostatek genetika MeSH
- fenotyp MeSH
- heterozygot MeSH
- homozygot MeSH
- lidé MeSH
- mismatch repair endonukleáza PMS2 MeSH
- mladiství MeSH
- molekulární sekvence - údaje MeSH
- nádory rekta genetika metabolismus MeSH
- sekvence aminokyselin MeSH
- thymin-DNA-glykosylasa genetika metabolismus MeSH
- zárodečné mutace * MeSH
- Check Tag
- lidé MeSH
- mladiství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenosintrifosfatasy MeSH
- DNA vazebné proteiny MeSH
- enzymy opravy DNA MeSH
- mismatch repair endonukleáza PMS2 MeSH
- PMS2 protein, human MeSH Prohlížeč
- thymin-DNA-glykosylasa MeSH
Cells with DNA repair defects have increased genomic instability and are more likely to acquire secondary mutations that bring about cellular transformation. We describe the frequency and spectrum of somatic mutations involving several tumor suppressor genes in the rectal carcinoma of a 13-year-old girl harboring biallelic, germline mutations in the DNA mismatch repair gene PMS2. Apart from microsatellite instability, the tumor DNA contained a number of C:G→T:A or G:C→A:T transitions in CpG dinucleotides, which often result through spontaneous deamination of cytosine or 5-methylcytosine. Four DNA glycosylases, UNG2, SMUG1, MBD4 and TDG, are involved in the repair of these deamination events. We identified a heterozygous missense mutation in TDG, which was associated with TDG protein loss in the tumor. The CpGs mutated in this patient's tumor are generally methylated in normal colonic mucosa. Thus, it is highly likely that loss of TDG contributed to the supermutator phenotype and that most of the point mutations were caused by deamination of 5-methylcytosine to thymine, which remained uncorrected owing to the TDG deficiency. This case provides the first in vivo evidence of the key role of TDG in protecting the human genome against the deleterious effects of 5-methylcytosine deamination.
Zobrazit více v PubMed
Aaltonen L.A., Peltomaki P., Leach F.S., Sistonen P., Pylkkanen L., Mecklin J.P., Jarvinen H., Powell S.M., Jen J., Hamilton S.R. Clues to the pathogenesis of familial colorectal cancer. Science. 1993;260:812–816. PubMed
Lynch H.T., de la Chapelle A. Hereditary colorectal cancer. N. Engl. J. Med. 2003;348:919–932. PubMed
Wimmer K., Etzler J. Constitutional mismatch repair-deficiency syndrome: have we so far seen only the tip of an iceberg? Hum. Genet. 2008;124:105–122. PubMed
Huang J., Papadopoulos N., McKinley A.J., Farrington S.M., Curtis L.J., Wyllie A.H., Zheng S., Willson J.K., Markowitz S.D., Morin P., Kinzler K.W., Vogelstein B., Dunlop M.G. APC mutations in colorectal tumors with mismatch repair deficiency. Proc. Natl. Acad. Sci. U.S.A. 1996;93:9049–9054. PubMed PMC
Kinzler K.W., Vogelstein B. Lessons from hereditary colorectal cancer. Cell. 1996;87:159–170. PubMed
Al-Tassan N., Chmiel N.H., Maynard J., Fleming N., Livingston A.L., Williams G.T., Hodges A.K., Davies D.R., David S.S., Sampson J.R., Cheadle J.P. Inherited variants of MYH associated with somatic G:C → T:A mutations in colorectal tumors. Nat. Genet. 2002;30:227–232. PubMed
Cheadle J.P., Sampson J.R. MUTYH-associated polyposis—from defect in base excision repair to clinical genetic testing. DNA Repair. 2007;6:274–279. PubMed
Gallinari P., Jiricny J. A new class of uracil-DNA glycosylases related to human thymine-DNA glycosylase. Nature. 1996;383:735–738. PubMed
Fischer F., Baerenfaller K., Jiricny J. 5-Fluorouracil is efficiently removed from DNA by the base excision and mismatch repair systems. Gastroenterology. 2007;133:1858–1868. PubMed
Truninger K., Menigatti M., Luz J., Russell A., Haider R., Gebbers J.O., Bannwart F., Yurtsever H., Neuweiler J., Riehle H.M., Cattaruzza M.S., Heinimann K., Schar P., Jiricny J., Marra G. Immunohistochemical analysis reveals high frequency of PMS2 defects in colorectal cancer. Gastroenterology. 2005;128:1160–1171. PubMed
Vasovcak P., Pavlikova K., Sedlacek Z., Skapa P., Kouda M., Hoch J., Krepelova A. Molecular genetic analysis of 103 sporadic colorectal tumours in czech patients. PLoS ONE. 2011;6:e24114. PubMed PMC
Wu Y., Nystrom-Lahti M., Osinga J., Looman M.W., Peltomaki P., Aaltonen L.A., de la Chapelle A., Hofstra R.M., Buys C.H. MSH2 and MLH1 mutations in sporadic replication error-positive colorectal carcinoma as assessed by two-dimensional DNA electrophoresis. Genes Chromosomes Cancer. 1997;18:269–278. PubMed
Han S.S., Cooper D.N., Upadhyaya M.N. Evaluation of denaturing high performance liquid chromatography (DHPLC) for the mutational analysis of the neurofibromatosis type 1 (NF1) gene. Hum. Genet. 2001;109:487–497. PubMed
Wu Y., Berends M.J., Mensink R.G., Kempinga C., Sijmons R.H., van Der Zee A.G., Hollema H., Kleibeuker J.H., Buys C.H., Hofstra R.M. Association of hereditary nonpolyposis colorectal cancer-related tumors displaying low microsatellite instability with MSH6 germline mutations. Am. J. Hum. Genet. 1999;65:1291–1298. PubMed PMC
Old J.M. Detection of mutations by the amplification refractory mutation system (ARMS) In: Mathew Ch.G., editor. Protocols in Human Molecular Genetics. The Humana Press Inc.; 1992. pp. 77–84.
Miyoshi Y., Ando H., Nagase H., Nishisho I., Horii A., Miki Y., Mori T., Utsunomiya J., Baba S., Petersen G. Germ-line mutations of the APC gene in 53 familial adenomatous polyposis patients. Proc. Natl. Acad. Sci. U.S.A. 1992;89:4452–4456. PubMed PMC
Etzler J., Peyrl A., Zatkova A., Schildhaus H.U., Ficek A., Merkelbach-Bruse S., Kratz C.P., Attarbaschi A., Hainfellner J.A., Yao S., Messiaen L., Slavc I., Wimmer K. RNA-based mutation analysis identifies an unusual MSH6 splicing defect and circumvents PMS2 pseudogene interference. Hum. Mutat. 2008;29:299–305. PubMed
van der Klift H.M., Tops C.M., Bik E.C., Boogaard M.W., Borgstein A.M., Hansson K.B., Ausems M.G., Gomez G.E., Green A., Hes F.J., Izatt L., van Hest L.P., Alonso A.M., Vriends A.H., Wagner A., van Zelst-Stams W.A., Vasen H.F., Morreau H., Devilee P., Wijnen J.T. Quantification of sequence exchange events between PMS2 and PMS2CL provides a basis for improved mutation scanning of Lynch syndrome patients. Hum. Mutat. 2010;31:578–587. PubMed
A. Wernstedt, E. Valtorta, F. Armelao, R. Togni, S. Girlando, M. Baudis, K. Heinimann, L. Messiaen, N. Staehli, J. Zschocke, G. Marra, K. Wimmer, Improved MPLA analysis identifies a deleterious PMS2 allele generated by recombination with crossover between PMS2 and PMS2CL, Genes Chromosomes and Cancer (2012) (in press). PubMed PMC
Messiaen L., Wimmer K. Mutation analysis of the NF1 gene by cDNA-based sequencing of the coding region. In: Cunha K.S.G., Geller M., editors. Advances in Neurofibromatosis Research. Nova Science Publisher; 2011.
De Vos M., Hayward B.E., Picton S., Sheridan E., Bonthron D.T. Novel PMS2 pseudogenes can conceal recessive mutations causing a distinctive childhood cancer syndrome. Am. J. Hum. Genet. 2004;74:954–964. PubMed PMC
Wang Q., Montmain G., Ruano E., Upadhyaya M., Dudley S., Liskay R.M., Thibodeau S.N., Puisieux A. Neurofibromatosis type 1 gene as a mutational target in a mismatch repair-deficient cell type. Hum. Genet. 2003;112:117–123. PubMed
Alotaibi H., Ricciardone M.D., Ozturk M. Homozygosity at variant MLH1 can lead to secondary mutation in NF1, neurofibromatosis type I and early onset leukemia. Mutat. Res. 2008;637:209–214. PubMed
Miyaki M., Nishio J., Konishi M., Kikuchi-Yanoshita R., Tanaka K., Muraoka M., Nagato M., Chong J.M., Koike M., Terada T., Kawahara Y., Fukutome A., Tomiyama J., Chuganji Y., Momoi M., Utsunomiya J. Drastic genetic instability of tumors and normal tissues in Turcot syndrome. Oncogene. 1997;15:2877–2881. PubMed
Kratz C.P., Niemeyer C.M., Juttner E., Kartal M., Weninger A., Schmitt-Graeff A., Kontny U., Lauten M., Utzolino S., Radecke J., Fonatsch C., Wimmer K. Childhood T-cell non-Hodgkin's lymphoma, colorectal carcinoma and brain tumor in association with cafe-au-lait spots caused by a novel homozygous PMS2 mutation. Leukemia. 2008;22:1078–1080. PubMed
Cortazar D., Kunz C., Saito Y., Steinacher R., Schar P. The enigmatic thymine DNA glycosylase. DNA Repair (Amst.) 2007;6:489–504. PubMed
Ramensky V., Bork P., Sunyaev S. Human non-synonymous SNPs: server and survey. Nucleic Acids Res. 2002;30:3894–3900. PubMed PMC
Ng P.C., Henikoff S. Predicting deleterious amino acid substitutions. Genome Res. 2001;11:863–874. PubMed PMC
Grantham R. Amino acid difference formula to help explain protein evolution. Science. 1974;185:862–864. PubMed
Cortazar D., Kunz C., Selfridge J., Lettieri T., Saito Y., MacDougall E., Wirz A., Schuermann D., Jacobs A.L., Siegrist F., Steinacher R., Jiricny J., Bird A., Schar P. Embryonic lethal phenotype reveals a function of TDG in maintaining epigenetic stability. Nature. 2011;470:419–423. PubMed
Cortellino S., Xu J., Sannai M., Moore R., Caretti E., Cigliano A., Le C.M., Devarajan K., Wessels A., Soprano D., Abramowitz L.K., Bartolomei M.S., Rambow F., Bassi M.R., Bruno T., Fanciulli M., Renner C., Klein-Szanto A.J., Matsumoto Y., Kobi D., Davidson I., Alberti C., Larue L., Bellacosa A. Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair. Cell. 2011;146:67–79. PubMed PMC
Peng B., Hurt E.M., Hodge D.R., Thomas S.B., Farrar W.L. DNA hypermethylation and partial gene silencing of human thymine- DNA glycosylase in multiple myeloma cell lines. Epigenetics. 2006;1:138–145. PubMed
Sjoblom T., Jones S., Wood L.D., Parsons D.W., Lin J., Barber T.D., Mandelker D., Leary R.J., Ptak J., Silliman N., Szabo S., Buckhaults P., Farrell C., Meeh P., Markowitz S.D., Willis J., Dawson D., Willson J.K., Gazdar A.F., Hartigan J., Wu L., Liu C., Parmigiani G., Park B.H., Bachman K.E., Papadopoulos N., Vogelstein B., Kinzler K.W., Velculescu V.E. The consensus coding sequences of human breast and colorectal cancers. Science. 2006;314:268–274. PubMed
Timmermann B., Kerick M., Roehr C., Fischer A., Isau M., Boerno S.T., Wunderlich A., Barmeyer C., Seemann P., Koenig J., Lappe M., Kuss A.W., Garshasbi M., Bertram L., Trappe K., Werber M., Herrmann B.G., Zatloukal K., Lehrach H., Schweiger M.R. Somatic mutation profiles of MSI and MSS colorectal cancer identified by whole exome next generation sequencing and bioinformatics analysis. PLoS ONE. 2010;5:e15661. PubMed PMC
Kunkel T.A., Erie D.A. DNA mismatch repair. Annu. Rev. Biochem. 2005;74:681–710. PubMed
Jiricny J. The multifaceted mismatch-repair system. Nat. Rev. Mol. Cell Biol. 2006;7:335–346. PubMed
Peltomaki P. Deficient DNA mismatch repair: a common etiologic factor for colon cancer. Hum. Mol. Genet. 2001;10:735–740. PubMed
Vilkki S., Tsao J.L., Loukola A., Poyhonen M., Vierimaa O., Herva R., Aaltonen L.A., Shibata D. Extensive somatic microsatellite mutations in normal human tissue. Cancer Res. 2001;61:4541–4544. PubMed
Wang Q., Lasset C., Desseigne F., Frappaz D., Bergeron C., Navarro C., Ruano E., Puisieux A. Neurofibromatosis and early onset of cancers in hMLH1-deficient children. Cancer Res. 1999;59:294–297. PubMed
Agostini M., Tibiletti M.G., Lucci-Cordisco E., Chiaravalli A., Morreau H., Furlan D., Boccuto L., Pucciarelli S., Capella C., Boiocchi M., Viel A. Two PMS2 mutations in a Turcot syndrome family with small bowel cancers. Am. J. Gastroenterol. 2005;100:1886–1891. PubMed
Kunz C., Saito Y., Schar P. DNA Repair in mammalian cells: Mismatched repair: variations on a theme. Cell. Mol. Life Sci. 2009;66:1021–1038. PubMed PMC
Kavli B., Sundheim O., Akbari M., Otterlei M., Nilsen H., Skorpen F., Aas P.A., Hagen L., Krokan H.E., Slupphaug G. hUNG2 is the major repair enzyme for removal of uracil from U:A matches, U:G mismatches, and U in single-stranded DNA, with hSMUG1 as a broad specificity backup. J. Biol. Chem. 2002;277:39926–39936. PubMed
Pettersen H.S., Sundheim O., Gilljam K.M., Slupphaug G., Krokan H.E., Kavli B. Uracil-DNA glycosylases SMUG1 and UNG2 coordinate the initial steps of base excision repair by distinct mechanisms. Nucleic Acids Res. 2007;35:3879–3892. PubMed PMC
Brown T.C., Jiricny J. A specific mismatch repair event protects mammalian cells from loss of 5-methylcytosine. Cell. 1987;50:945–950. PubMed
Wiebauer K., Jiricny J. In vitro correction of G.T mispairs to G.C pairs in nuclear extracts from human cells. Nature. 1989;339:234–236. PubMed
Neddermann P., Gallinari P., Lettieri T., Schmid D., Truong O., Hsuan J.J., Wiebauer K., Jiricny J. Cloning and expression of human G/T mismatch-specific thymine-DNA glycosylase. J. Biol. Chem. 1996;271:12767–12774. PubMed
Bellacosa A. Role of MED1 (MBD4) gene in DNA repair and human cancer. J. Cell Physiol. 2001;187:137–144. PubMed
Hendrich B., Hardeland U., Ng H.H., Jiricny J., Bird A. The thymine glycosylase MBD4 can bind to the product of deamination at methylated CpG sites. Nature. 1999;401:301–304. PubMed
Cattaneo E., Baudis M., Buffoli F., Bianco M.A., Zorzi F., Marra G. Springer Science + Business Media, LLC; 2010. Pathways and Crossroads to Colorectal Cancer, Pre-invasive Disease: Pathogenesis and Clinical Management.