Gold and silver nanoparticles for biomolecule immobilization and enzymatic catalysis
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články
PubMed
22655978
PubMed Central
PMC3447686
DOI
10.1186/1556-276x-7-287
PII: 1556-276X-7-287
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
In this work, a simple method for alcohol synthesis with high enantiomeric purity was proposed. For this, colloidal gold and silver surface modifications with 3-mercaptopropanoic acid and cysteamine were used to generate carboxyl and amine functionalized gold and silver nanoparticles of 15 and 45 nm, respectively. Alcohol dehydrogenase from Thermoanaerobium brockii (TbADH) and its cofactor (NADPH) were physical and covalent (through direct adsorption and using cross-linker) immobilized on nanoparticles' surface. In contrast to the physical and covalent immobilizations that led to a loss of 90% of the initial enzyme activity and 98% immobilization, the use of a cross-linker in immobilization process promoted a loss to 30% of the initial enzyme activity and >92% immobilization. The yield of NADPH immobilization was about 80%. The best results in terms of activity were obtained with Ag-citr nanoparticle functionalized with carboxyl groups (Ag-COOH), Au-COOH(CTAB), and Au-citr functionalized with amine groups and stabilized with CTAB (Au-NH2(CTAB)) nanoparticles treated with 0.7% and 1.0% glutaraldehyde. Enzyme conformation upon immobilization was studied using fluorescence and circular dichroism spectroscopies. Shift in ellipticity at 222 nm with about 4 to 7 nm and significant decreasing in fluorescence emission for all bioconjugates were observed by binding of TbADH to silver/gold nanoparticles. Emission redshifting of 5 nm only for Ag-COOH-TbADH bioconjugate demonstrated change in the microenvironment of TbADH. Enzyme immobilization on glutaraldehyde-treated Au-NH2(CTAB) nanoparticles promotes an additional stabilization preserving about 50% of enzyme activity after 15 days storage. Nanoparticles attached-TbADH-NADPH systems were used for enantioselective (ee > 99%) synthesis of (S)-7-hydroxy-2-tetralol.
Zobrazit více v PubMed
Fernandez-Lafuente R. Stabilization of multimeric enzymes: strategies to prevent subunit dissociation. Enz Microb Technol. 2009;45(6–7):405–418.
de Temino DMR, Hartmeier W, Ansorge-Schumacher MB. Entrapment of the alcohol dehydrogenase from Lactobacillus kefir in polyvinyl alcohol for the synthesis of chiral hydrophilic alcohols in organic solvents. Enz Microb Technol. 2005;36:3–9. doi: 10.1016/j.enzmictec.2004.01.013. DOI
Wang Q, Yang Z, Wang L, Ma M, Xu B. Molecular hydrogel-immobilized enzymes exhibit superactivity and high stability in organic solvents. Chem Commun. 2007;10:1032–1034. PubMed
Iyer PV, Ananthanarayan L. Enzyme stability and stabilization — aqueous and non-aqueous environment. Process Biochem. 2008;43(10):1019–1032. doi: 10.1016/j.procbio.2008.06.004. DOI
Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enz Microb Technol. 2007;40(6):1451–1463. doi: 10.1016/j.enzmictec.2007.01.018. DOI
Alonso N, Lopez-Callego F, Betancor L, Hidalgo A, Mateo C, Guisan JM, Fernandez-Lafuente R. Immobilization and stabilization of glutaryl acylase on aminated sepabeads supports by the glutaraldehyde crosslinking method. J Mol Catal B: Enzym. 2005;35:57–61. doi: 10.1016/j.molcatb.2005.05.007. DOI
Kondo A, Murakami F, Kawagoe M, Higashitani K. Kinetics and circular dichroism of enzymes adsorbed on ultrafine silica particles. Appl Microb Biotechnol. 1993;39:726–731. doi: 10.1007/BF00164457. PubMed DOI
Hamerska-Dudra A, Bryjak J, Trochimczuk AW. Novel method of enzymes stabilization on crosslinked thermosensitive carriers. Enz Microb Technol. 2006;38:921–925. doi: 10.1016/j.enzmictec.2005.08.019. DOI
Lopez-Callego F, Betancor L, Hidalgo A, Dellamora-Ortiz G, Mateo C, Fernandez-Lafuente R, Guisan JM. Stabilization of different alcohol oxidases via immobilization and post immobilization technique. Enz Microb Technol. 2007;40:278–284. doi: 10.1016/j.enzmictec.2006.04.021. DOI
Kim J, Grate JW, Wang P. Nanostructures for enzyme stabilization. Chem Eng Sci. 2006;61:1017–1026. doi: 10.1016/j.ces.2005.05.067. DOI
Zhao HZ, Sun JJ, Song J, Yang QZ. Direct electron transfer and conformational changes of glucose oxidase on carbon nanotubes-based electrodes. Carbon. 2010;48:1508–1514. doi: 10.1016/j.carbon.2009.12.046. DOI
Ma S, Mu J, Qu Y, Jiang L. Effect of refluxed silver nanoparticles on inhibition and enhancement of enzymatic activity of glucose oxidase. Colloids Surf A: Physicochem Eng Aspects. 2009;345:101–105. doi: 10.1016/j.colsurfa.2009.04.038. DOI
Lundqvist M, Sethson I, Jonsson BH. Protein adsorption onto silica nanoparticles: conformational changes depend on the particles' curvature and the protein stability. Langmuir. 2004;20(24):10639–10647. doi: 10.1021/la0484725. PubMed DOI
Kelly SM, Jess TJ, Price NC. How to study proteins by circular dichroism. Biochim Biophys Acta. 2005;1751:119–139. doi: 10.1016/j.bbapap.2005.06.005. PubMed DOI
Cai W, Gao T, Hong H, Sun J. Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol Sci Appl. 2008;1:17–32. PubMed PMC
Hirsch LR, Stafford RJ, Bankson JA. Nanoshell-mediated nearinfrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA. 2003;100:13549–13554. doi: 10.1073/pnas.2232479100. PubMed DOI PMC
Thomas M, Klibanov A. Conjugation to gold nanoparticles enhances polyethylenimines transfer of plasmid DNA into mammalian cells. Proc Natl Acad Sci USA. 2003;100:9138–9143. doi: 10.1073/pnas.1233634100. PubMed DOI PMC
Du D, Chen S, Cai J, Zhang A. Immobilization of acetylcholinesterase on gold nanoparticles embedded in sol–gel film for amperometric detection of organophosphorous insecticid. Biosens Bioelectron. 2007;23:130–134. doi: 10.1016/j.bios.2007.03.008. PubMed DOI
Jain P, Pradeep T. Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnol Bioeng. 2005;90:59–63. doi: 10.1002/bit.20368. PubMed DOI
Hayat MA. Colloidal Gold Principles, Methods and Applications. Academic, San Diego; 1989.
Wu CL, Chen YP, Yang JC, Lo HF, Lin LL. Characterization of lysine-tagged Bacillus stearothermophilus leucine aminopeptidase II immobilized onto carboxylated gold nanoparticles. J Mol Catal B: Enzym. 2008;54:83–89. doi: 10.1016/j.molcatb.2007.12.024. DOI
Vertegel AA, Siegel RW, Dordick JS. Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir. 2004;20:6800–6807. doi: 10.1021/la0497200. PubMed DOI
Lan DD, Li BB, Zhang ZZ. Chemiluminescence flow biosensor for glucose based on gold nanoparticle-enhanced activities of glucose oxidase and horseradish peroxidase. Biosens Bioelectron. 2008;24:940. PubMed
Sun Y, Yan F, Yang W, Sun C. Multilayered construction of glucose oxidase and silica nanoparticles on Au electrodes based on layer-by-layer covalent attachment. Biomaterials. 2006;27:4042. doi: 10.1016/j.biomaterials.2006.03.014. PubMed DOI
Keighron JD, Keating CD. Enzyme:nanoparticles bioconjugates with two sequential enzymes: stoichiometry and activity of malate dehydrogenase and citrate synthase on Au nanoparticles. Langmuir. 2010;26(24):18992–19000. doi: 10.1021/la1040882. PubMed DOI PMC
Nakamura K, Yamanaka R, Matsuda T, Harada T. Recent developments in asymmetric reduction of ketones with biocatalysts. Ttetrahedron: Asymmetry. 2003;14:2659–2681. doi: 10.1016/S0957-4166(03)00526-3. DOI
van der Donk WA, Zhao H. Recent developments in pyridine nucleotide regeneration. Curr Opin Biotechnol. 2003;14:421–426. doi: 10.1016/S0958-1669(03)00094-6. PubMed DOI
Korkhin Y, Kalb-Gilboa AJ, Peretz M, Bogin O, Burstein Y, Frolow F. Oligomeric integrity - the structural key to thermal stability in bacterial alcohol dehydrogenases. Protein Sci. 1999;8:1241–1249. doi: 10.1110/ps.8.6.1241. PubMed DOI PMC
Kelly DR, Lewis JD. Unusual stereoselectivity in the reduction of bicyclo[3.3.0]oct-2-en-8-one byThermoanaerobium brockiialcohol dehydrogenase. J Chem Soc Chem Commun. 1991;19:1330–1332.
Yang H, Jonsson A, Wehtje E, Adlercreutz P, Mattiasson B. The enantiomeric purity of alcohols formed by enzymatic reduction of ketones can be improved by optimisation of the temperature and by using a high co-substrate concentration. Biochim Biophys Acta. 1997;1336:51–58. doi: 10.1016/S0304-4165(97)00010-X. PubMed DOI
Miroliaei M. Studies on the activity and stability of immobilized thermophilic alcohol dehydrogenase. Sci Iranica. 2007;14(2):112–117.
Vittorini M, Barletta G, Dumitriu E, Secundo F. Immobilization of Thermoanaerobium brockii alcohol dehydrogenase on SBA-15. Bioprocess Biosyst Eng. 2011;34:247–251. doi: 10.1007/s00449-010-0480-0. PubMed DOI
El-Zahab B, Jia H, Wang P. Enabling multyenzyme biocatalysis using nanoporous materials. Biotechnol Bioeng. 2004;87(2):178–183. doi: 10.1002/bit.20131. PubMed DOI
Liu W, Zhang S, Wang P. Nanoparticle-supported multi-enzyme biocatalysis within situcofactor regeneration. J Biotechnol. 2009;139:102–107. doi: 10.1016/j.jbiotec.2008.09.015. PubMed DOI
Liu W, Wang P. Cofactor regeneration for sustainable enzymatic biosynthesis. Biotechnol Adv. 2007;25:369–384. doi: 10.1016/j.biotechadv.2007.03.002. PubMed DOI
Smitha LS, Nissamudeen KM, Philip D, Gopchandran KG. Studies on surface plasmon resonance and photoluminescence of silver nanoparticles. Spectrochim Acta A. 2008;71:186. doi: 10.1016/j.saa.2007.12.002. PubMed DOI
Řezanka P, Záruba K, Král V. A change in nucleotide selectivity pattern of porphyrin derivatives after immobilization on gold nanoparticles. Tetrahedron Lett. 2008;48:6448–6453.
Bradford MM. A rapid and sensitive for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI
Tischer W, Wedekind F. Immobilized Enzymes: Methods and Applications. Springer Verlag, Topics in Current Chemistry. Berlin Heidelberg; 1999.
Ma L, Wen J, Lu W, Caiyin Q, Liang Y. Efficient immobilization of lactate dehydrogenase in biocomposites of double-walled carbon nanotube-doped alginate gel. Enz Microb Technol. 2008;42:235–241. doi: 10.1016/j.enzmictec.2007.09.014. DOI
Ansari SA, Husain Q. Potential application of enzymes immobilized on/in nanomaterials: a review. Biotechnol Adv. 2012;30(3):512–523. doi: 10.1016/j.biotechadv.2011.09.005. PubMed DOI
Kelly SM, Price NC. The use of circular dichroism in the investigation of protein structure and function. Curr Protein Pept Sci. 2000;1(4):349–384. doi: 10.2174/1389203003381315. PubMed DOI
Chen YH, Yang JT, Martinez HM. Determination of the secondary structures of proteins by circular dichroism and optical rotatory dispersiont. Biochemistry. 1972;11(22):4120–4131. doi: 10.1021/bi00772a015. PubMed DOI
Koutsopoulos S, Patzsch K, Bosker WTE, Norde W. Adsorption of trypsin on hydrophilic and hydrophobic surfaces. Langmuir. 2007;23:2000–2006. doi: 10.1021/la062238s. PubMed DOI
Trovaslet M, Dallet-Choisy S, Meersman F, Heremans K, Balny C, Legoy MD. Fluorescence and FTIR study of pressure-induced structural modifications of horse liver alcohol dehydrogenase (HLADH) Eur J Biochem. 2003;270:119–128. PubMed
Olofsson L, Nicholls IA, Wikman S. TBADH activity in water-miscible organic solvents: correlations between enzyme performance, enantioselectivity and protein structure through spectroscopic studies. Org Biomol Chem. 2005;3:750–755. doi: 10.1039/b418040b. PubMed DOI
Shamim N, Liang H, Hidajat K, Uddin MS. Adsorption, desorption, and conformational changes of lysozyme from thermosensitive nanomagnetic particles. J Colloid Interface Sci. 2008;320:15–21. doi: 10.1016/j.jcis.2007.08.012. PubMed DOI
Demchenko AP. Red-edge-excitation fluorescence spectroscopy of single-tryptophan proteins. Eur Biophys. 1988;16:121–129. PubMed
Soares CMF, dos Santos OA, de Castro HF, de Moreas FF, Zanin GM. Characterisation of sol–gel encapsulated lipase using tetraethoxysilane as precursor. J Mol Catal B: Enzym. 2006;39:69–76. doi: 10.1016/j.molcatb.2006.01.005. DOI
Žvátora P, Řezanka P, Prokopec V, Siegel J, Švorčík V, Král V. Polytetrafluorethylene-Au as a substrate for surface-enhanced Raman spectroscopy. Nanoscale Res Lett. 2011;6:366–370. doi: 10.1186/1556-276X-6-366. PubMed DOI PMC