Polytetrafluorethylene-Au as a substrate for surface-enhanced Raman spectroscopy
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články
PubMed
21711893
PubMed Central
PMC3211456
DOI
10.1186/1556-276x-6-366
PII: 1556-276X-6-366
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
This study deals with preparation of substrates suitable for surface-enhanced Raman spectroscopy (SERS) applications by sputtering deposition of gold layer on the polytetrafluorethylene (PTFE) foil. Time of sputtering was investigated with respect to the surface properties. The ability of PTFE-Au substrates to enhance Raman signals was investigated by immobilization of biphenyl-4,4'-dithiol (BFD) from the solutions with various concentrations. BFD was also used for preparation of sandwich structures with Au or Ag nanoparticles by two different procedures. Results showed that PTFE can be used for fabrication of SERS active substrate with easy handle properties at low cost. This substrate was sufficient for the measurement of SERS spectrum of BFD even at 10-8 mol/l concentration.
Zobrazit více v PubMed
Moskovits M. Surface-enhanced spectroscopy. Rev Mod Phys. 1985;57:783. doi: 10.1103/RevModPhys.57.783. DOI
Campion A, Kambhampati P. Surface-enhanced Raman scattering. Chem Soc Rev. 1998;27:241. doi: 10.1039/a827241z. DOI
Sant'Ana AC, Rocha TCR, Santos PS, Zanchet D, Temperini MLA. Size-dependent SERS enhancement of colloidal silver nanoplates: the case of 2-amino-5-nitropyridine. J Raman Spectrosc. 2009;40:183. doi: 10.1002/jrs.2103. DOI
Jeanmaire DL, Van Duyne RP. Surface Raman spectroelectrochemistry Part I. heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem. 1977;84:1. doi: 10.1016/S0022-0728(77)80224-6. DOI
Albrecht MG, Creighton JA. Anomalously intense Raman spectra of pyridine at a silver electrode. J Am Chem Soc. 1977;99:5215. doi: 10.1021/ja00457a071. DOI
Kneipp K, Kneipp H, Deinum G, Itzkan I, Dasari RP, Feld MS. Extremely large enhancement factors in surface-enhanced Raman scattering for molecules on colloidal gold clusters. Appl Spectrosc. 1998;52:175. doi: 10.1366/0003702981943275. DOI
Nie S, Emory SR. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science. 1997;275:1102. doi: 10.1126/science.275.5303.1102. PubMed DOI
Van Duyne RP, Hulteen JC. Atomic force microscopy and surface-enhanced Raman spectroscopy. I. Ag island films and Ag film over polymer nanosphere surfaces supported on glass. J Phys Chem. 1993;99:2101. doi: 10.1063/1.465276. DOI
Aroca RF, Clavijo RE. Surface-enhanced Raman spectra of phthalimide. Interpretation of the SERS spectra of the surface complex formed on silver islands and colloids. J Phys Chem A. 2000;104:9500. doi: 10.1021/jp002071q. DOI
Litorja M, Haynes LC, Haes JA, Jensen RT, Van Duyne RP. Surface-enhanced Raman scattering detected temperature programmed desorption: optical properties, nanostructure, and stability of silver films over SiO2 nanospheres. J Phys Chem B. 2001;105:6907. doi: 10.1021/jp010333y. DOI
Bello JM, Stokes DL, Vo-Dinh T. Silver-coated alumina as a new medium for surfaced-enhanced raman scattering analysis. Appl Spectrosc. 1989;43:1325. doi: 10.1366/0003702894204326. DOI
Xue G, Dong J. Stable silver substrate prepared by the nitric acid etching method for a surface-enhanced Raman scattering study. Anal Chem. 1991;63:2393. doi: 10.1021/ac00020a037. DOI
Haynes LC, Van Duyne RP. Plasmon-sampled surface-enhanced Raman excitation spectroscopy. J Phys Chem B. 2003;107:7426. doi: 10.1021/jp027749b. PubMed DOI
McFarland AD, Young MA, Dieringer JA, Van Duyne RP. Wavelength-scanned surface-enhanced Raman excitation spectroscopy. J Phys Chem B. 2005;109:11279. doi: 10.1021/jp050508u. PubMed DOI
Geissler M, Li K, Cui B, Clime L, Veres T. Plastic substrates for surface-enhanced raman scattering. J Phys Chem C. 2009;113:17296. doi: 10.1021/jp9038607. DOI
Jang BSG, Choi D, Heo Ch, Lee SY, Yang S. Nanoscopic ordered voids and metal caps by controlled trapping of colloidal particles at polymeric film surfaces. Adv Mater. 2008;20:4862. doi: 10.1002/adma.200702851. DOI
Linn NC, Sun Ch, Arya A, Jiang P, Jiang B. Surface-enhanced Raman scattering on periodic metal nanotips with tunable sharpness. Nanotechnology. 2009;20:225303. doi: 10.1088/0957-4484/20/22/225303. PubMed DOI
Švorčík V, Siegel J, Slepička P, Kotál V, Švorčíková J, Špirková M. Au nanolayers deposited on polyethyleneterephtalate and polytetrafluorethylene degraded by plasma discharge. Surf Interface Anal. 2007;39:79. doi: 10.1002/sia.2512. DOI
Wang Y, Chen H, Dong S, Wang E. Surface enhanced Raman scattering of p-aminothiophenol self-assembled monolayers in sandwich structure fabricated on glass. J Chem Phys. 2006;124:8. 074706. PubMed
Švorčík V, Slepička P, Švorčíková J, Zehentner J, Hnatowicz V. Characterization of evaporated and sputtered thin Au layers on PET. J Appl Polym Sci. 2006;99:1698. doi: 10.1002/app.22666. DOI
Řezanka P, Záruba K, Král V. A change in nucleotide selectivity pattern of porphyrin derivatives after immobilization on gold nanoparticles. Tetrahedron Lett. 2008;49:6448. doi: 10.1016/j.tetlet.2008.08.099. DOI
Smitha LS, Nissamudeen KM, Philip D, Gopchandran KG. Studies on surface plasmon resonance and photoluminescence of silver nanoparticles. Spectrochim Acta A. 2008;71:186. doi: 10.1016/j.saa.2007.12.002. PubMed DOI
Žvátora P, Řezanka P, Záruba K, Král V. Binding of selected compounds to silvernanoparticles. Chem Listy. 2010;104:202.
Gold and silver nanoparticles for biomolecule immobilization and enzymatic catalysis
"Soft and rigid" dithiols and Au nanoparticles grafting on plasma-treated polyethyleneterephthalate
Annealing of gold nanostructures sputtered on polytetrafluoroethylene