Structure and pathology of tau protein in Alzheimer disease
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
22690349
PubMed Central
PMC3368361
DOI
10.1155/2012/731526
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Alzheimer's disease (AD) is the most common type of dementia. In connection with the global trend of prolonging human life and the increasing number of elderly in the population, the AD becomes one of the most serious health and socioeconomic problems of the present. Tau protein promotes assembly and stabilizes microtubules, which contributes to the proper function of neuron. Alterations in the amount or the structure of tau protein can affect its role as a stabilizer of microtubules as well as some of the processes in which it is implicated. The molecular mechanisms governing tau aggregation are mainly represented by several posttranslational modifications that alter its structure and conformational state. Hence, abnormal phosphorylation and truncation of tau protein have gained attention as key mechanisms that become tau protein in a pathological entity. Evidences about the clinicopathological significance of phosphorylated and truncated tau have been documented during the progression of AD as well as their capacity to exert cytotoxicity when expressed in cell and animal models. This paper describes the normal structure and function of tau protein and its major alterations during its pathological aggregation in AD.
Zobrazit více v PubMed
Maccioni RB, Muñoz JP, Barbeito L. The molecular bases of Alzheimer’s disease and other neurodegenerative disorders. Archives of Medical Research. 2001;32(5):367–381. PubMed
Kosik KS. The molecular and cellular biology of tau. Brain Pathology. 1993;3(1):39–43. PubMed
Mandelkow EM, Biernat J, Drewes G, Gustke N, Trinczek B, Mandelkow E. Tau domains, phosphorylation, and interactions with microtubules. Neurobiology of Aging. 1995;16(3):355–363. PubMed
Liu F, Iqbal K, Grundke-Iqbal I, Rossie S, Gong CX. Dephosphorylation of tau by protein phosphatase 5: impairment in Alzheimer’s disease. The Journal of Biological Chemistry. 2005;280(3):1790–1796. PubMed
Avila J. Tau kinases and phosphatases: commentary. Journal of Cellular and Molecular Medicine. 2008;12(1):258–259. PubMed PMC
Iqbal K, Grundke-Iqbal I. Alzheimer neurofibrillary degeneration: significance, etiopathogenesis, therapeutics and prevention: Alzheimer review series. Journal of Cellular and Molecular Medicine. 2008;12(1):38–55. PubMed PMC
Sergeant N, Delacourte A, Buée L. Tau protein as a differential biomarker of tauopathies. Biochimica et Biophysica Acta. 2005;1739(2):179–197. PubMed
Cleveland DW, Hwo SY, Kirschner MW. Physical and chemical properties of purified tau factor and the role of tau in microtubule assembly. Journal of Molecular Biology. 1977;116(2):227–247. PubMed
Von Bergen M, Barghorn S, Biernat J, Mandelkow EM, Mandelkow E. Tau aggregation is driven by a transition from random coil to beta sheet structure. Biochimica et Biophysica Acta. 2005;1739(2):158–166. PubMed
Gamblin TC. Potential structure/function relationships of predicted secondary structural elements of tau. Biochimica et Biophysica Acta. 2005;1739(2):140–149. PubMed
Jeganathan S, Von Bergen M, Mandelkow EM, Mandelkow E. The natively unfolded character of Tau and its aggregation to Alzheimer-like paired helical filaments. Biochemistry. 2008;47(40):10526–10539. PubMed
Dyson HJ, Wright PE. Intrinsically unstructured proteins and their functions. Nature Reviews Molecular Cell Biology. 2005;6(3):197–208. PubMed
Mukrasch MD, Bibow S, Korukottu J, et al. Structural polymorphism of 441-residue Tau at single residue resolution. PLoS Biology. 2009;7(2) Article ID e1000034. PubMed PMC
Goedert M, Jakes R. Expression of separate isoforms of human tau protein: correlation with the tau pattern in brain and effects on tubulin polymerization. The EMBO Journal. 1990;9(13):4225–4230. PubMed PMC
Alonso ADC, Zaidi T, Novak M, Grundke-Iqbal I, Iqbal K. Hyperphosphorylation induces self-assembly of τ into tangles of paired helical filaments/straight filaments. Proceedings of the National Academy of Sciences of the United States of America. 2001;98(12):6923–6928. PubMed PMC
Sergeant N, Bretteville A, Hamdane M, et al. Biochemistry of Tau in Alzheimer’s disease and related neurological disorders. Expert Review of Proteomics. 2008;5(2):207–224. PubMed
Ebneth A, Godemann R, Stamer K, et al. Overexpression of tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implications for Alzheimer’s disease. Journal of Cell Biology. 1998;143(3):777–794. PubMed PMC
Couchie D, Mavilia C, Georgieff IS, Liem RKH, Shelanski ML, Nunez J. Primary structure of high molecular weight tau present in the peripheral nervous system. Proceedings of the National Academy of Sciences of the United States of America. 1992;89(10):4378–4381. PubMed PMC
Georgieff IS, Liem RKH, Couchie D, Mavilia C, Nunez J, Shelanski ML. Expression of high molecular weight tau in the central and peripheral nervous systems. Journal of Cell Science. 1993;105(3):729–737. PubMed
Goedert M, Spillantini MG, Crowther RA. Cloning of a big tau microtubule-associated protein characteristic of the peripheral nervous system. Proceedings of the National Academy of Sciences of the United States of America. 1992;89(5):1983–1987. PubMed PMC
Balastik M, Lim J, Pastorino L, Lu KP. Pin1 in Alzheimer’s disease: multiple substrates, one regulatory mechanism? Biochimica et Biophysica Acta. 2007;1772(4):422–429. PubMed PMC
Jung D, Filliol D, Miehe M, Rendon A. Interaction of brain mitochondria with microtubules reconstituted from brain tubulin and MAP2 or TAU. Cell Motility and the Cytoskeleton. 1993;24(4):245–255. PubMed
Brandt R, Léger J, Lee G. Interaction of tau with the neural plasma membrane mediated by tau’s amino-terminal projection domain. Journal of Cell Biology. 1995;131(5):1327–1340. PubMed PMC
Arrasate M, Pérez M, Avila J. Tau dephosphorylation at Tau-1 site correlates with its association to cell membrane. Neurochemical Research. 2000;25(1):43–50. PubMed
Maas T, Eidenmüller J, Brandt R. Interaction of tau with the neural membrane cortex is regulated by phosphorylation at sites that are modified in paired helical filaments. The Journal of Biological Chemistry. 2000;275(21):15733–15740. PubMed
Reynolds CH, Garwood CJ, Wray S, et al. Phosphorylation regulates tau interactions with Src homology 3 domains of phosphatidylinositol 3-kinase, phospholipase Cγ1, Grb2, and Src family kinases. The Journal of Biological Chemistry. 2008;283(26):18177–18186. PubMed
Baba A, Akagi K, Takayanagi M, Flanagan JG, Kobayashi T, Hattori M. Fyn tyrosine kinase regulates the surface expression of glycosylphosphatidylinositol-linked ephrin via the modulation of sphingomyelin metabolism. The Journal of Biological Chemistry. 2009;284(14):9206–9214. PubMed PMC
Hoe HS, Minami SS, Makarova A, et al. Fyn modulation of Dab1 effects on amyloid precursor protein and apoe receptor 2 processing. The Journal of Biological Chemistry. 2008;283(10):6288–6299. PubMed
Lee G, Thangavel R, Sharma VM, et al. Phosphorylation of tau by fyn: implications for Alzheimer’s disease. Journal of Neuroscience. 2004;24(9):2304–2312. PubMed PMC
Pooler AM, Usardi A, Evans CJ, Philpott KL, Noble W, Hanger DP. Dynamic association of tau with neuronal membranes is regulated by phosphorylation. Neurobiology of Aging. 2012;33(2):431.e27–431.e38. PubMed
Ittner LM, Ke YD, Delerue F, et al. Dendritic function of tau mediates amyloid-β toxicity in alzheimer’s disease mouse models. Cell. 2010;142(3):387–397. PubMed
Pritchard SM, Dolan PJ, Vitkus A, Johnson GVW. The toxicity of tau in Alzheimer disease: turnover, targets and potential therapeutics. Journal of Cellular and Molecular Medicine. 2011;15(8):1621–1635. PubMed PMC
Cardona-Gómez GP, Arango-Davila C, Gallego-Gómez JC, Barrera-Ocampo A, Pimienta H, Garcia-Segura LM. Estrogen dissociates Tau and alpha-amino-3-hydroxy-5-methylisoxazole-4- propionic acid receptor subunit in postischemic hippocampus. NeuroReport. 2006;17(12):1337–1341. PubMed
Klein C, Kramer EM, Cardine AM, Schraven B, Brandt R, Trotter J. Process outgrowth of oligodendrocytes is promoted by interaction of fyn kinase with the cytoskeletal protein tau. Journal of Neuroscience. 2002;22(3):698–707. PubMed PMC
Brandt R, Lee G. Functional organization of microtubule-associated protein tau. Identification of regions which affect microtubule growth, nucleation, and bundle formation in vitro. The Journal of Biological Chemistry. 1993;268(5):3414–3419. PubMed
Mandell JW, Banker GA. A spatial gradient of tau protein phosphorylation in nascent axons. Journal of Neuroscience. 1996;16(18):5727–5740. PubMed PMC
Drechsel DN, Hyman AA, Cobb MH, Kirschner MW. Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau. Molecular Biology of the Cell. 1992;3(10):1141–1154. PubMed PMC
Butner KA, Kirschner MW. Tau protein binds to microtubules through a flexible array of distributed weak sites. Journal of Cell Biology. 1991;115(3):717–730. PubMed PMC
Goode BL, Feinstein SC. Identification of a novel microtubule binding and assembly domain in the developmentally regulated inter-repeat region of tau. Journal of Cell Biology. 1994;124(5):769–781. PubMed PMC
Sontag E, Nunbhakdi-Craig V, Lee G, et al. Molecular interactions among protein phosphatase 2A, tau, and microtubules. Implications for the regulation of tau phosphorylation and the development of tauopathies. The Journal of Biological Chemistry. 1999;274(36):25490–25498. PubMed
Drubin DG, Nelson WJ. Origins of cell polarity. Cell. 1996;84(3):335–344. PubMed
Goodson HV, Valetti C, Kreis TE. Motors and membrane traffic. Current Opinion in Cell Biology. 1997;9(1):18–28. PubMed
Waterman-Storer CM, Salmon ED. Microtubule dynamics: treadmilling comes around again. Current Biology. 1997;7(6):R369–R372. PubMed
Brady ST, Sperry AO. Biochemical and functional diversity of microtubule motors in the nervous system. Current Opinion in Neurobiology. 1995;5(5):551–558. PubMed
Lippincott-Schwartz J, Cole NB, Marotta A, Conrad PA, Bloom GS. Kinesin is the motor for microtubule-mediated Golgi-to-ER membrane traffic. Journal of Cell Biology. 1995;128(3):293–306. PubMed PMC
Morris RL, Hollenbeck PJ. The regulation of bidirectional mitochondrial transport is coordinated with axonal outgrowth. Journal of Cell Science. 1993;104(3):917–927. PubMed
Tanaka Y, Kanai Y, Okada Y, et al. Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria. Cell. 1998;93(7):1147–1158. PubMed
Hollenbeck PJ, Swanson JA. Radial extension of macrophage tubular lysosomes supported by kinesin. Nature. 1990;346(6287):864–866. PubMed
Wiemer EAC, Wenzel T, Deerinck TJ, Ellisman MH, Subramani S. Visualization of the peroxisomal compartment in living mammalian cells: dynamic behavior and association with microtubules. Journal of Cell Biology. 1997;136(1):71–80. PubMed PMC
Scales SJ, Pepperkok R, Kreis TE. Visualization of ER-to-Golgi transport in living cells reveals a sequential mode of action for COPII and COPI. Cell. 1997;90(6):1137–1148. PubMed
Cuchillo-Ibanez I, Seereeram A, Byers HL, et al. Phosphorylation of tau regulates its axonal transport by controlling its binding to kinesin. The FASEB Journal. 2008;22(9):3186–3195. PubMed
Trinczek B, Ebneth A, Mandelkow EM, Mandelkow E. Tau regulates the attachment/detachment but not the speed of motors in microtubule-dependent transport of single vesicles and organelles. Journal of Cell Science. 1999;112(14):2355–2367. PubMed
Carrell RW, Gooptu B. Conformational changes and disease–serpins, prions and Alzheimer’s. Current Opinion in Structural Biology. 1998;8(6):799–809. PubMed
Fox N, Harvey RJ, Rossor MN. Protein folding, nucleation phenomena and delayed neurodegeneration in Alzheimer’s disease. Reviews in the Neurosciences. 1996;7(1):21–28. PubMed
Hyman BT, Augustinack JC, Ingelsson M. Transcriptional and conformational changes of the tau molecule in Alzheimer’s disease. Biochimica et Biophysica Acta. 2005;1739(2):150–157. PubMed
García-Sierra F, Ghoshal N, Quinn B, Berry RW, Bínder LI. Conformational changes and truncation of tau protein during tangle evolution in Alzheimer’s disease. Journal of Alzheimer’s Disease. 2003;5(2):65–77. PubMed
Ghoshal N, García-Sierra F, Fu Y, et al. Tau-66: evidence for a novel tau conformation in alzheimer’s disease. Journal of Neurochemistry. 2001;77(5):1372–1385. PubMed
Ghoshal N, García-Sierra F, Wuu J, et al. Tau conformational changes correspond to impairments of episodic memory in mild cognitive impairment and Alzheimer’s disease. Experimental Neurology. 2002;177(2):475–493. PubMed
Mandelkow EM, Stamer K, Vogel R, Thies E, Mandelkow E. Clogging of axons by tau, inhibition of axonal traffic and starvation of synapses. Neurobiology of Aging. 2003;24(8):1079–1085. PubMed
LaPointe NE, Morfini G, Pigino G, et al. The amino terminus of tau inhibits kinesin-dependent axonal transport: implications for filament toxicity. Journal of Neuroscience Research. 2009;87(2):440–451. PubMed PMC
Futerman AH, Banker GA. The economics of neurite outgrowth–the addition of new membrane to growing axons. Trends in Neurosciences. 1996;19(4):144–149. PubMed
Trojanowski JQ, Lee VMY. Phosphorylation of paired helical filament tau in Alzheimer’s disease neurofibrillary lesions: focusing on phosphatases. The FASEB Journal. 1995;9(15):1570–1576. PubMed
Martin L, Latypova X, Terro F. Post-translational modifications of tau protein: implications for Alzheimer’s disease. Neurochemistry International. 2011;58(4):458–471. PubMed
Soto C. Alzheimer’s and prion disease as disorders of protein conformation: implications for the design of novel therapeutic approaches. Journal of Molecular Medicine. 1999;77(5):412–418. PubMed
Grundke-Iqbal I, Iqbal K, Tung YC. Abnormal phosphorylation of the microtubule-associated protein τ (tau) in Alzheimer cytoskeletal pathology. Proceedings of the National Academy of Sciences of the United States of America. 1986;83(13):44913–4917. PubMed PMC
Mondragón-Rodríguez S, Basurto-Islas G, Binder LI, García-Sierra F. Conformational changes and cleavage; are these responsible for the tau aggregation in Alzheimer’s disease? Future Neurology. 2009;4(1):39–53.
Binder LI, Guillozet-Bongaarts AL, Garcia-Sierra F, Berry RW. Tau, tangles, and Alzheimer’s disease. Biochimica et Biophysica Acta. 2005;1739(2):216–223. PubMed
Kuhla B, Haase C, Flach K, Lüth HJ, Arendt T, Münch G. Effect of pseudophosphorylation and cross-linking by lipid peroxidation and advanced glycation end product precursors on tau aggregation and filament formation. The Journal of Biological Chemistry. 2007;282(10):6984–6991. PubMed
Wischik CM, Novak M, Edwards PC, Klug A, Tichelaar W, Crowther RA. Structural characterization of the core of the paired helical filament of Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America. 1988;85(13):4884–4888. PubMed PMC
Perry G, Mulvihill P, Fried VA, Smith HT, Grundke-Iqbal I, Iqbal K. Immunochemical properties of ubiquitin conjugates in the paired helical filaments of Alzheimer disease. Journal of Neurochemistry. 1989;52(5):1523–1528. PubMed
Reynolds MR, Berry RW, Binder LI. Site-specific nitration and oxidative dityrosine bridging of the τ protein by peroxynitrite: implications for Alzheimer’s disease. Biochemistry. 2005;44(5):1690–1700. PubMed
Gamblin TC, Chen F, Zambrano A, et al. Caspase cleavage of tau: linking amyloid and neurofibrillary tangles in Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(17):10032–10037. PubMed PMC
Min SW, Cho SH, Zhou Y, et al. Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron. 2010;67(6):953–966. PubMed PMC
Buée L, Bussière T, Buée-Scherrer V, Delacourte A, Hof PR. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Research Reviews. 2000;33(1):95–130. PubMed
Drewes G, Trinczek B, Illenberger S, et al. Microtubule-associated protein/microtubule affinity-regulating kinase (p110(mark)). A novel protein kinase that regulates tau-microtubule interactions and dynamic instability by phosphorylation at the Alzheimer- specific site serine 262. The Journal of Biological Chemistry. 1995;270(13):7679–7688. PubMed
Dickey CA, Kamal A, Lundgren K, et al. The high-affinity HSP90-CHIP complex recognizes and selectively degrades phosphorylated tau client proteins. The Journal of Clinical Investigation. 2007;117(3):648–658. PubMed PMC
Gong CX, Iqbal K. Hyperphosphorylation of microtubule-associated protein tau: a promising therapeutic target for Alzheimer disease. Current Medicinal Chemistry. 2008;15(23):2321–2328. PubMed PMC
Liu F, Zaidi T, Iqbal K, Grundke-Iqbal I, Merkle RK, Gong CX. Role of glycosylation in hyperphosphorylation of tau in Alzheimer’s disease. FEBS Letters. 2002;512(1–3):101–106. PubMed
Avila J, Lucas JJ, Pérez M, Hernández F. Role of tau protein in both physiological and pathological conditions. Physiological Reviews. 2004;84(2):361–384. PubMed
Kopke E, Tung YC, Shaikh S, Del Alonso CA, Iqbal K, Grundke-Iqbal I. Microtubule-associated protein tau. Abnormal phosphorylation of a non- paired helical filament pool in Alzheimer disease. The Journal of Biological Chemistry. 1993;268(32):24374–24384. PubMed
Iqbal K, Liu F, Gong CX, del Alonso AC, Grundke-Iqbal I. Mechanisms of tau-induced neurodegeneration. Acta Neuropathologica. 2009;118(1):53–69. PubMed PMC
Khatoon S, Grundke-Iqbal I, Iqbal K. Levels of normal and abnormally phosphorylated tan in different cellular and regional compartments of Alzheimer disease and control brains. FEBS Letters. 1994;351(1):80–84. PubMed
Alonso ADC, Zaidi T, Grundke-Iqbal I, Iqbal K. Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America. 1994;91(12):5562–5566. PubMed PMC
Li B, Chohan MO, Grundke-Iqbal I, Iqbal K. Disruption of microtubule network by Alzheimer abnormally hyperphosphorylated tau. Acta Neuropathologica. 2007;113(5):501–511. PubMed PMC
Wang JZ, Gong CX, Zaidi T, Grundke-Iqbal I, Iqbal K. Dephosphorylation of Alzheimer paired helical filaments by protein phosphatase-2A and -2B. The Journal of Biological Chemistry. 1995;270(9):4854–4860. PubMed
Alonso ADC, Grundke-Iqbal I, Barra HS, Iqbal K. Abnormal phosphorylation of tau and the mechanism of Alzheimer neurofibrillary degeneration: sequestration of microtubule-associated proteins 1 and 2 and the disassembly of microtubules by the abnormal tau. Proceedings of the National Academy of Sciences of the United States of America. 1997;94(1):298–303. PubMed PMC
Hanger DP, Byers HL, Wray S, et al. Novel phosphorylation sites in Tau from Alzheimer brain support a role for casein kinase 1 in disease pathogenesis. The Journal of Biological Chemistry. 2007;282(32):23645–23654. PubMed
Biernat J, Gustke N, Drewes G, Mandelkow EM, Mandelkow E. Phosphorylation of Ser262 strongly reduces binding of tau to microtubules: distinction between PHF-like immunoreactivity and microtubule binding. Neuron. 1993;11(1):153–163. PubMed
Du JT, Yu CH, Zhou LX, et al. Phosphorylation modulates the local conformation and self-aggregation ability of a peptide from the fourth tau microtubule-binding repeat. FEBS Journal. 2007;274(19):5012–5020. PubMed
Lee VMY, Balin BJ, Otvos L, Trojanowski JQ. A68: a major subunit of paired helical filaments and derivatized forms of normal tau. Science. 1991;251(4994):675–678. PubMed
Grundke-Iqbal I, Iqbal K, Quinlan M. Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. The Journal of Biological Chemistry. 1986;261(13):6084–6089. PubMed
Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology. 1992;42(3):631–639. PubMed
Bancher C, Brunner C, Lassmann H, et al. Accumulation of abnormally phosphorylated τ precedes the formation of neurofibrillary tangles in Alzheimer’s disease. Brain Research. 1989;477(1-2):90–99. PubMed
Braak E, Braaak H, Mandelkow EM. A sequence of cytoskeleton changes related to the formation of neurofibrillary tangles and neuropil threads. Acta Neuropathologica. 1994;87(6):554–567. PubMed
García-Sierra F, Hauw JJ, Duyckaerts C, Wischik CM, Luna-Muñoz J, Mena R. The extent of neurofibrillary pathology in perforant pathway neurons is the key determinant of dementia in the very old. Acta Neuropathologica. 2000;100(1):29–35. PubMed
Kosik KS, Joachim CL, Selkoe DJ. Microtubule-associated protein tau (τ) is a major antigenic component of paired helical filaments in Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America. 1986;83(11):4044–4048. PubMed PMC
Mondragón-Rodríguez S, Basurto-Islas G, Santa-Maria I, et al. Cleavage and conformational changes of tau protein follow phosphorylation during Alzheimer’s disease. International Journal of Experimental Pathology. 2008;89(2):81–90. PubMed PMC
Saito M, Chakraborty G, Mao RF, Paik SM, Vadasz C, Saito M. Tau phosphorylation and cleavage in ethanol-induced neurodegeneration in the developing mouse brain. Neurochemical Research. 2010;35(4):651–659. PubMed PMC
Rohn TT, Rissman RA, Davis MC, Kim YE, Cotman CW, Head E. Caspase-9 activation and caspase cleavage of tau in the Alzheimer’s disease brain. Neurobiology of Disease. 2002;11(2):341–354. PubMed
Zhang Q, Zhang X, Sun A. Truncated tau at D421 is associated with neurodegeneration and tangle formation in the brain of Alzheimer transgenic models. Acta Neuropathologica. 2009;117(6):687–697. PubMed
Cohen TJ, Guo JL, Hurtado DE, et al. The acetylation of tau inhibits its function and promotes pathological tau aggregation. Nature Communications. 2011;2(1, article 252) PubMed PMC
Irwin DJ, Cohen TJ, Grossman M, et al. Acetylated tau, a novel pathological signature in Alzheimer's disease and other tauopathies. Brain. 2012;135(3):807–818. PubMed PMC
Choudhary C, Kumar C, Gnad F, et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science. 2009;325(5942):834–840. PubMed
Goodman RH, Smolik S. CBP/p300 in cell growth, transformation, and development. Genes and Development. 2000;14(13):1553–1577. PubMed
Haigis MC, Guarente LP. Mammalian sirtuins–emerging roles in physiology, aging, and calorie restriction. Genes and Development. 2006;20(21):2913–2921. PubMed
Michan S, Sinclair D. Sirtuins in mammals: insights into their biological function. Biochemical Journal. 2007;404(1):1–13. PubMed PMC
Gan L, Mucke L. Paths of convergence: sirtuins in aging and neurodegeneration. Neuron. 2008;58(1):10–14. PubMed PMC
Julien C, Tremblay C, Émond V, et al. Sirtuin 1 reduction parallels the accumulation of tau in alzheimer disease. Journal of Neuropathology and Experimental Neurology. 2009;68(1):48–58. PubMed PMC
Donmez G, Wang D, Cohen DE, Guarente L. SIRT1 suppresses β-amyloid production by activating the α-secretase gene ADAM10. Cell. 2010;142(2):320–332. PubMed PMC
Ruben GC, Iqbal K, Grundke-Iqbal I, Wisniewski HM, Ciardelli TL, Johnson JE. The microtubule-associated protein tau forms a triple-stranded left-hand helical polymer. The Journal of Biological Chemistry. 1991;266(32):22019–22027. PubMed
Von Bergen M, Friedhoff P, Biernat J, Heberle J, Mandelkow EM, Mandelkow E. Assembly of τ protein into Alzheimer paired helical filaments depends on a local sequence motif (306VQIVYK311) forming β structure. Proceedings of the National Academy of Sciences of the United States of America. 2000;97(10):5129–5134. PubMed PMC
Arrasate M, Pérez M, Armas-Portela R, Ávila J. Polymerization of tau peptides into fibrillar structures. The effect of FTDP-17 mutations. FEBS Letters. 1999;446(1):199–202. PubMed
Watanabe A, Takio K, Ihara Y. Deamidation and isoaspartate formation in smeared tau in paired helical filaments: unusual properties of the microtubule-binding domain of tau. The Journal of Biological Chemistry. 1999;274(11):7368–7378. PubMed
Crowther RA, Olesen OF, Jakes R, Goedert M. The microtubule binding repeats of tau protein assemble into filaments like those found in Alzheimer’s disease. FEBS Letters. 1992;309(2):199–202. PubMed
Pérez M, Valpuesta JM, Medina M, Montejo De Garcini E, Avila J. Polymerization of τ into filaments in the presence of heparin: the minimal sequence required for τ-τ interaction. Journal of Neurochemistry. 1996;67(3):1183–1190. PubMed
Goedert M, Jakes R, Spillantini MG, Hasegawa M, Smith MJ, Crowther RA. Assembly of microtubule-associated protein tau into Alzheimer-like filaments induced by sulphated glycosaminoglycans. Nature. 1996;383(6600):550–553. PubMed
Kampers T, Friedhoff P, Biernat J, Mandelkow EM, Mandelkow E. RNA stimulates aggregation of microtubule-associated protein tau into Alzheimer-like paired helical filaments. FEBS Letters. 1996;399(3):344–349. PubMed
Wilson DM, Binder LI. Free fatty acids stimulate the polymerization of tau and amyloid β peptides: in vitro evidence for a common effector of pathogenesis in Alzheimer’s disease. American Journal of Pathology. 1997;150(6):2181–2195. PubMed PMC
Barghorn S, Mandelkow E. Toward a unified scheme for the aggregation of tau into Alzheimer paired helical filaments. Biochemistry. 2002;41(50):14885–14896. PubMed
Gamblin TC, Berry RW, Binder LI. Tau polymerization: role of the amino terminus. Biochemistry. 2003;42(7):2252–2257. PubMed
Kuret J, Chirita CN, Congdon EE, et al. Pathways of tau fibrillization. Biochimica et Biophysica Acta. 2005;1739(2):167–178. PubMed
King ME, Gamblin TC, Kuret J, Binder LI. Differential assembly of human tau isoforms in the presence of arachidonic acid. Journal of Neurochemistry. 2000;74(4):1749–1757. PubMed
Patterson KR, Remmers C, Fu Y, et al. Characterization of prefibrillar tau oligomers in vitro and in Alzheimer disease. The Journal of Biological Chemistry. 2011;286(26):23063–23076. PubMed PMC
Santacruz K, Lewis J, Spires T, et al. Medicine: tau suppression in a neurodegenerative mouse model improves memory function. Science. 2005;309(5733):476–481. PubMed PMC
Sydow A, Van Der Jeugd A, Zheng F, et al. Tau-induced defects in synaptic plasticity, learning, and memory are reversible in transgenic mice after switching off the toxic tau mutant. Journal of Neuroscience. 2011;31(7):2511–2525. PubMed PMC
Berger Z, Roder H, Hanna A, et al. Accumulation of pathological tau species and memory loss in a conditional model of tauopathy. Journal of Neuroscience. 2007;27(14):3650–3662. PubMed PMC
Wischik CM, Novak M, Thogersen HC, et al. Isolation of a fragment of tau derived from the core of the paired helical filament of Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America. 1988;85(12):4506–4510. PubMed PMC
Novak M, Kabat J, Wischik CM. Molecular characterization of the minimal protease resistant tau unit of the Alzheimer’s disease paired helical filament. The EMBO Journal. 1993;12(1):365–370. PubMed PMC
Mena R, Edwards PC, Harrington CR, Mukaetova-Ladinska EB, Wischik CM. Staging the pathological assembly of truncated tau protein into paired helical filaments in Alzheimer’s disease. Acta Neuropathologica. 1996;91(6):633–641. PubMed
García-Sierra F, Wischik CM, Harrington CR, Luna-Muñoz J, Mena R. Accumulation of C-terminally truncated tau protein associated with vulnerability of the perforant pathway in early stages of neurofibrillary pathology in Alzheimer’s disease. Journal of Chemical Neuroanatomy. 2001;22(1-2):65–77. PubMed
Abraha A, Ghoshal N, Gamblin TC, et al. C-terminal inhibition of tau assembly in vitro and in Alzheimer’s disease. Journal of Cell Science. 2000;113(21):3737–3745. PubMed
Rohn TT, Rissman RA, Head E, Cotman CW. Caspase activation in the Alzheimer’s disease brain: tortuous and torturous. Drug News and Perspectives. 2002;15(9):549–557. PubMed
De La Monte SM, Sohn YK, Wands JR. Correlates of p53- and Fas (CD95)-mediated apoptosis in Alzheimer’s disease. Journal of the Neurological Sciences. 1997;152(1):73–83. PubMed
Stadelmann C, Deckwerth TL, Srinivasan A, et al. Activation of caspase-3 in single neurons and autophagic granules of granulovacuolar degeneration in Alzheimer’s disease: evidence for apoptotic cell death. American Journal of Pathology. 1999;155(5):1459–1466. PubMed PMC
Rohn TT, Head E, Su JH, et al. Correlation between caspase activation and neurofibrillary tangle formation in Alzheimer’s disease. American Journal of Pathology. 2001;158(1):189–198. PubMed PMC
Nagy Z, Esiri MM. Apoptosis-related protein expression in the hippocampus in Alzheimer’s disease. Neurobiology of Aging. 1997;18(6):565–571. PubMed
Guo H, Albrecht S, Bourdeau M, Petzke T, Bergeron C, LeBlanc AC. Active caspase-6 and caspase-6-cleaved tau in neuropil threads, neuritic plaques, and neurofibrillary tangles of Alzheimer’s disease. American Journal of Pathology. 2004;165(2):523–531. PubMed PMC
Su JH, Zhao M, Anderson AJ, Srinivasan A, Cotman CW. Activated caspase-3 expression in Alzheimer’s and aged control brain: correlation with Alzheimer pathology. Brain Research. 2001;898(2):350–357. PubMed
Cryns V, Yuan J. Proteases to die for. Genes and Development. 1998;12(11):1551–1570. PubMed
Gervais FG, Xu D, Robertson GS, et al. Involvement of caspases in proteolytic cleavage of Alzheimer’s amyloid-β precursor protein and amyloidogenic Aβ peptide formation. Cell. 1999;97(3):395–406. PubMed
Smale G, Nichols NR, Brady DR, Finch CE, Horton WE. Evidence for apoptotic cell death in Alzheimer’s disease. Experimental Neurology. 1995;133(2):225–230. PubMed
Rissman RA, Poon WW, Blurton-Jones M, et al. Caspase-cleavage of tau is an early event in Alzheimer disease tangle pathology. The Journal of Clinical Investigation. 2004;114(1):121–130. PubMed PMC
Cotman CW, Poon WW, Rissman RA, Blurton-Jones M. The role of caspase cleavage of tau in Alzheimer disease neuropathology. Journal of Neuropathology and Experimental Neurology. 2005;64(2):104–112. PubMed
Berry RW, Abraha A, Lagalwar S, et al. Inhibition of tau polymerization by its carboxy-terminal caspase cleavage fragment. Biochemistry. 2003;42(27):8325–8331. PubMed
Guillozet-Bongaarts AL, Garcia-Sierra F, Reynolds MR, et al. Tau truncation during neurofibrillary tangle evolution in Alzheimer’s disease. Neurobiology of Aging. 2005;26(7):1015–1022. PubMed
Guillozet-Bongaarts AL, Cahill ME, Cryns VL, Reynolds MR, Berry RW, Binder LI. Pseudophosphorylation of tau at serine 422 inhibits caspase cleavage: in vitro evidence and implications for tangle formation in vivo. Journal of Neurochemistry. 2006;97(4):1005–1014. PubMed
Horowitz PM, Patterson KR, Guillozet-Bongaarts AL, et al. Early N-terminal changes and caspase-6 cleavage of tau in Alzheimer’s disease. Journal of Neuroscience. 2004;24(36):7895–7902. PubMed PMC
Bandyopadhyay B, Li G, Yin H, Kuret J. Tau aggregation and toxicity in a cell culture model of tauopathy. The Journal of Biological Chemistry. 2007;282(22):16454–16464. PubMed
Canu N, Dus L, Barbato C, et al. Tau cleavage and dephosphorylation in cerebellar granule neurons undergoing apoptosis. Journal of Neuroscience. 1998;18(18):7061–7074. PubMed PMC
Fasulo L, Ovecka M, Kabat J, Bradbury A, Novak M, Cattaneo A. Overexpression of Alzheimer’s PHF core tau fragments: implications for the tau truncation hypothesis. Alzheimer’s Research. 1996;2(5):195–200.
Fasulo L, Ugolini G, Visintin M, et al. The neuronal microtubule-associated protein tau is a substrate for caspase-3 and an effector of apoptosis. Journal of Neurochemistry. 2000;75(2):624–633. PubMed
Fasulo L, Ugolini G, Cattaneo A. Apoptotic effect of caspase-3 cleaved tau in hippocampal neurons and its potentiation by tau FTDP-mutation N279K. Journal of Alzheimer’s Disease. 2005;7(1):3–13. PubMed
Chun W, Johnson GVW. The role of tau phosphorylation and cleavage in neuronal cell death. Frontiers in Bioscience. 2007;12(2):733–756. PubMed
Matthews-Roberson TA, Quintanilla RA, Ding H, Johnson GVW. Immortalized cortical neurons expressing caspase-cleaved tau are sensitized to endoplasmic reticulum stress induced cell death. Brain Research. 2008;1234(C):206–212. PubMed PMC
Quintanilla RA, Matthews-Roberson TA, Dolan PJ, Johnsion GVW. Caspase-cleaved tau expression induces mitochondrial dysfunction in immortalized cortical neurons: implications for the pathogenesis of alzheimer disease. The Journal of Biological Chemistry. 2009;284(28):18754–18766. PubMed PMC
Quintanilla RA, Dolan PJ, Jin YN, Johnson GVW. Truncated tau and Aβ cooperatively impair mitochondria in primary neurons. Neurobiology of Aging. 2012;33(3):619.e25–619.e35. PubMed PMC
Filipcik P, Cente M, Krajciova G, Vanicky I, Novak M. Cortical and hippocampal neurons from truncated tau transgenic rat express multiple markers of neurodegeneration. Cellular and Molecular Neurobiology. 2009;29(6-7):895–900. PubMed PMC
Delobel P, Lavenir I, Fraser G, et al. Analysis of tau phosphorylation and truncation in a mouse model of human tauopathy. American Journal of Pathology. 2008;172(1):123–131. PubMed PMC
De Calignon A, Fox LM, Pitstick R, et al. Caspase activation precedes and leads to tangles. Nature. 2010;464(7292):1201–1204. PubMed PMC
Koson P, Zilka N, Kovac A, et al. Truncated tau expression levels determine life span of a rat model of tauopathy without causing neuronal loss or correlating with terminal neurofibrillary tangle load. European Journal of Neuroscience. 2008;28(2):239–246. PubMed
Cente M, Filipcik P, Pevalova M, Novak M. Expression of a truncated tau protein induces oxidative stress in a rodent model of tauopathy. European Journal of Neuroscience. 2006;24(4):1085–1090. PubMed
McMillan PJ, Kraemer BC, Robinson L, Leverenz JB, Raskind M, Schellenberg G. Truncation of tau at E391 promotes early pathologic changes in transgenic mice. Journal of Neuropathology and Experimental Neurology. 2011;70(11):1006–1019. PubMed PMC
Basurto-Islas G, Luna-Muñoz J, Guillozet-Bongaarts AL, Binder LI, Mena R, García-Sierra F. Accumulation of aspartic acid421- and glutamic acid 391-cleaved tau in neurofibrillary tangles correlates with progression in Alzheimer disease. Journal of Neuropathology and Experimental Neurology. 2008;67(5):470–483. PubMed PMC
Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathologica. 1991;82(4):239–259. PubMed
García-Sierra F, Jarero-Basulto JJ, Kristofikova Z, Majer E, Binder LI, Ripova D. Ubiquitin is associated with early truncation of tau protein at aspartic acid421 during the maturation of neurofibrillary tangles in Alzheimer's disease. Brain Pathology. 2012;22(2):240–250. PubMed PMC
García-Sierra F, Mondragón-Rodríguez S, Basurto-Islas G. Truncation of tau protein and its pathological significance in Alzheimer’s disease. Journal of Alzheimer’s Disease. 2008;14(4):401–409. PubMed
Autoantibodies targeting neuronal proteins as biomarkers for neurodegenerative diseases
Heart failure and Alzheimer's disease
Overlooked Alzheimer's smoking gun?