Regulation of the transient receptor potential channel TRPA1 by its N-terminal ankyrin repeat domain
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- ankyrinová repetice fyziologie MeSH
- kationtové kanály TRP chemie fyziologie MeSH
- kationtový kanál TRPA1 MeSH
- lidé MeSH
- molekulární modely MeSH
- motivy EF-ruky fyziologie MeSH
- proteiny nervové tkáně chemie fyziologie MeSH
- simulace molekulární dynamiky MeSH
- vápník metabolismus MeSH
- vápníkové kanály chemie fyziologie MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kationtové kanály TRP MeSH
- kationtový kanál TRPA1 MeSH
- proteiny nervové tkáně MeSH
- TRPA1 protein, human MeSH Prohlížeč
- vápník MeSH
- vápníkové kanály MeSH
The transient receptor potential channel A1 (TRPA1) is unique among ion channels of higher vertebrates in that it harbors a large ankyrin repeat domain. The TRPA1 channel is expressed in the inner ear and in nociceptive neurons. It is involved in hearing as well as in the perception of pungent and irritant chemicals. The ankyrin repeat domain has special mechanical properties, which allows it to function as a soft spring that can be extended over a large range while maintaining structural integrity. A calcium-binding site has been experimentally identified within the ankyrin repeats. We built a model of the N-terminal 17 ankyrin repeat structure, including the calcium-binding EF-hand. In our simulations we find the calcium-bound state to be rigid as compared to the calcium-free state. While the end-to-end distance can change by almost 50% in the apo form, these fluctuations are strongly reduced by calcium binding. This increase in stiffness that constraints the end-to-end distance in the holo form is predicted to affect the force acting on the gate of the TRPA1 channel, thereby changing its open probability. Simulations of the transmembrane domain of TRPA1 show that residue N855, which has been associated with familial episodic pain syndrome, forms a strong link between the S4-S5 connecting helix and S1, thereby creating a direct force link between the N-terminus and the gate. The N855S mutation weakens this interaction, thereby reducing the communication between the N-terminus and the transmembrane part of TRPA1.
Zobrazit více v PubMed
J Comput Chem. 2005 Dec;26(16):1701-18 PubMed
J Chem Theory Comput. 2008 Mar;4(3):435-47 PubMed
Mol Biosyst. 2008 May;4(5):372-9 PubMed
Am J Respir Cell Mol Biol. 2009 Jun;40(6):756-62 PubMed
J Biol Chem. 2008 Nov 21;283(47):32691-703 PubMed
Neuron. 2004 Mar 25;41(6):849-57 PubMed
Proc Natl Acad Sci U S A. 2006 Dec 19;103(51):19564-8 PubMed
BMC Bioinformatics. 2004 Aug 19;5:113 PubMed
Proc Natl Acad Sci U S A. 1977 Jun;74(6):2407-11 PubMed
Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W321-6 PubMed
Nature. 2004 Dec 9;432(7018):723-30 PubMed
Eur J Neurosci. 2008 Mar;27(5):1131-42 PubMed
J Neurosci. 1982 Jan;2(1):1-10 PubMed
Nat Neurosci. 2007 Mar;10(3):277-9 PubMed
FASEB J. 2009 Apr;23(4):1102-14 PubMed
Bioinformatics. 2007 Nov 1;23(21):2947-8 PubMed
Nat Chem Biol. 2009 Nov;5(11):789-96 PubMed
Cell. 2003 Mar 21;112(6):819-29 PubMed
Biophys J. 2006 Feb 15;90(4):L30-2 PubMed
Nature. 2006 Mar 9;440(7081):246-9 PubMed
J Comput Chem. 2004 Oct;25(13):1605-12 PubMed
J Biol Chem. 2007 May 4;282(18):13180-9 PubMed
Nature. 1993 May 27;363(6427):309-10 PubMed
J Mol Biol. 1993 Dec 5;234(3):779-815 PubMed
Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W244-8 PubMed
Nature. 2005 Mar 3;434(7029):99-104 PubMed
Handb Exp Pharmacol. 2007;(179):509-25 PubMed
Biochim Biophys Acta. 2009 Jul;1793(7):1279-88 PubMed
Neuron. 1988 May;1(3):189-99 PubMed
J Mol Biol. 2000 Sep 8;302(1):205-17 PubMed
J Biol Chem. 2006 Apr 28;281(17):12060-8 PubMed
Neuron. 1993 Oct;11(4):581-94 PubMed
J Biol Chem. 2011 Nov 4;286(44):38168-38176 PubMed
Proc Int Conf Intell Syst Mol Biol. 1998;6:175-82 PubMed
BMC Bioinformatics. 2008 Jan 23;9:40 PubMed
Acta Crystallogr D Biol Crystallogr. 2001 Dec;57(Pt 12):1843-9 PubMed
Biophys J. 1997 May;72(5):2002-13 PubMed
Proteins. 2008 Feb 15;70(3):611-25 PubMed
Nature. 2001 Sep 13;413(6852):194-202 PubMed
Biochem J. 2011 Jan 1;433(1):197-204 PubMed
J Physiol. 2010 Feb 1;588(Pt 3):423-33 PubMed
Nucleic Acids Res. 2002 Jan 1;30(1):281-3 PubMed
Am J Physiol Cell Physiol. 2008 Jul;295(1):C92-9 PubMed
Proteins. 2002 May 15;47(3):393-402 PubMed
Nature. 2004 Jan 15;427(6971):260-5 PubMed
Nature. 1990 Mar 1;344(6261):36-42 PubMed
J Neurosci. 2005 Apr 20;25(16):4052-61 PubMed
Proc Natl Acad Sci U S A. 2010 Jun 22;107(25):11352-7 PubMed
J Neurosci. 1998 Nov 1;18(21):8637-47 PubMed
Nucleic Acids Res. 2007 Jul;35(Web Server issue):W407-10 PubMed
Am J Respir Crit Care Med. 2009 Dec 1;180(11):1042-7 PubMed
J Struct Biol. 2010 Jun;170(3):427-38 PubMed
J Biol Chem. 2012 Feb 24;287(9):6169-76 PubMed
Cell. 2002 Feb 8;108(3):371-81 PubMed
EMBO J. 2008 Nov 5;27(21):2809-16 PubMed
Nat Chem Biol. 2009 Mar;5(3):183-90 PubMed
Nature. 2007 Feb 1;445(7127):541-5 PubMed
Proc Natl Acad Sci U S A. 2005 Aug 23;102(34):12248-52 PubMed
J Mol Biol. 2007 Jul 27;370(5):887-98 PubMed
Nature. 1987 Oct 15-21;329(6140):651-4 PubMed
EMBO J. 2002 Dec 2;21(23):6387-96 PubMed
Structure. 2005 Apr;13(4):669-82 PubMed
PLoS Comput Biol. 2010 Jun 03;6(6):e1000801 PubMed
Biophys J. 2005 Nov;89(5):3362-71 PubMed
Pflugers Arch. 2008 Oct;457(1):77-89 PubMed
Neuron. 2010 Jun 10;66(5):671-80 PubMed
Neuroscience. 2008 Jul 17;154(4):1467-76 PubMed
Biophys J. 2010 Apr 7;98(7):1294-301 PubMed
J Clin Invest. 2007 Jul;117(7):1979-87 PubMed
Methods. 2007 Apr;41(4):475-88 PubMed