Female rose bitterling prefer MHC-dissimilar males: experimental evidence
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
22815816
PubMed Central
PMC3399850
DOI
10.1371/journal.pone.0040780
PII: PONE-D-12-09718
Knihovny.cz E-zdroje
- MeSH
- Cyprinidae imunologie fyziologie MeSH
- hlavní histokompatibilní komplex imunologie MeSH
- lineární modely MeSH
- rozhodování MeSH
- sexuální výběr u zvířat fyziologie MeSH
- výběrové chování fyziologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The role of genetic benefits in female mate choice remains a controversial aspect of sexual selection theory. In contrast to "good allele" models of sexual selection, "compatible allele" models of mate choice predict that females prefer mates with alleles complementary to their own rather than conferring additive effects. While correlative results suggest complementary genetic effects to be plausible, direct experimental evidence is scarce. A previous study on the Chinese rose bitterling (Rhodeus ocellatus) demonstrated a positive correlation between female mate choice, offspring growth and survival, and the functional dissimilarity between the Major Histocompatibility Complex (MHC) alleles of males and females. Here we directly tested whether females used cues associated with MHC genes to select genetically compatible males in an experimental framework. By sequentially pairing females with MHC similar and dissimilar males, based on a priori known MHC profiles, we showed that females discriminated between similar and dissimilar males and deposited significantly more eggs with MHC dissimilar males. Notably, the degree of dissimilarity was an important factor for female decision to mate, possibly indicating a potential threshold value of dissimilarity for decision making, or of an indirect effect of the MHC.
Zobrazit více v PubMed
Kirkpatrick M, Barton NH. The strength of indirect selection on female mating preferences. Proc Nat Acad Sci USA. 1997;94:1282–1286. PubMed PMC
Qvarnström A, Brommer JE, Gustafsson L. Testing the genetics underlying the co-evolution of mate choice and ornament in the wild. Nature. 2006;441:84–86. PubMed
Kempenaers B. Mate choice and genetic quality: A review of the heterozygosity theory. Adv Stud Beh. 2007;37:89–278.
Andersson M. Sexual selection. Princeton: Princeton University Press. 624 pp. 1994.
Zeh JA, Zeh DW. The evolution of polyandry I: intragenomic conflict and genetic incompatibility. P Roy Soc B. 1996;263:1711–1717.
Zeh JA, Zeh DW. The evolution of polyandry. 2. Post-copulatory defences against genetic incompatibility. P Roy Soc B. 1997;264:69–75.
Neff BD, Pitcher TE. Genetic quality and sexual selection: an integrated framework for good genes and compatible genes. Mol Ecol. 2005;14:19–38. PubMed
Piálek J, Albrecht T. Choosing mates: complementary versus compatible genes, Trends Ecol Evol. 2005;20:63. PubMed
Penn D J, Potts WK. Chemical signals and parasite mediated sexual selection. Trends Ecol Evol. 1998;13:391–396. PubMed
Yamazaki K, Beauchamp GK. Genetic basis for MHC-dependent mate choice. Adv Genet. 2007;59:129–145. PubMed
Gerlach G, Hodgins-Davis A, Avolio C, Schunter C. Kin recognition in zebrafish: a 24-hour window for olfactory imprinting. P Roy Soc B. 2008;275:2165–2170. PubMed PMC
Milinski M. Major Histocompatibility Complex, sexual selection, and mate choice. Annu Rev Ecol Syst. 2006;37:159–186.
Setchell JM, Vaglio S, Abbott KM, Moggi-Cecchi J, Boscaro F, et al. Odour signals Major Histocompatibility Complex genotype in an Old World monkey. P Roy Soc B. 2010;278:274–280. PubMed PMC
Doherty PC, Zinkernagel RM. Enhanced immunological surveillance in mice heterozygous at the H-2 gene complex. Nature. 1975;256:50–52. PubMed
Nowak MA, Tarczy-Hornoch K, Austyn JM. The optimal number of major histocompatibility complex molecules in an individual. Proc Natl Acad Sci USA. 1992;89:10896–10899. PubMed PMC
Wegner KM, Kalbe M, Kurtz J, Reusch TBH, Milinski M. Parasite selection for immunogenetic optimality. Science. 2003;301:1343. PubMed
Wakeland EK, Boehme S, She JX, Lu CC, McIndoe RA, et al. Ancestral polymorphisms of MHC class II genes: divergent allele advantage. Immunol Res. 1990;9:115–22. PubMed
Lenz TL, Wells K, Pfeiffer M, Sommer S. Diverse MHC IIB allele repertoire increases parasite resistance and body condition in the Long-tailed giant rat (Leopoldamys sabanus). BMC Evol Biol. 2009;9:269. PubMed PMC
Clarke B, Kirby DLS. Maintenance of Histocompatibility polymorphisms. Nature. 1966;11:999–1000. PubMed
Bernatchez L, Landry C. MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years? J Evol Biol. 2003;16:363–377. PubMed
Schwensow N, Eberle M, Sommer S. Compatibility counts: MHC-associated mate choice in a wild promiscuous primate. P Roy Soc B. 2008;275:555–564. PubMed PMC
Griggio M, Biard C, Penn D, Hoi H. Female house sparrows "count on" male genes: experimental evidence for MHC-dependent mate preference in birds. BMC Evol Biol. 2011;11:44. PubMed PMC
Oliver M, Piertney S. Beyond splitting hares and rabbiting on about major histocompatibility complex complexity. Mol Ecol. 2010;19:4099–4101. PubMed
Agbali M, Reichard M, Bryjová A, Bryja J, Smith C. Mate choice for non-additive genetic benefits correlate with MHC dissimilarity in the rose bitterling (Rhodeus ocellatus). Evolution. 2010;64:1683–1696. PubMed
Casalini M, Agbali M, Reichard M, Konečná M, Bryjová A, et al. Male dominance, female mate choice and intersexual conflict in the rose bitterling (Rhodeus ocellatus). Evolution. 2009;63:366–376. PubMed
Mills SC, Reynolds JD. Host species preferences by bitterling, Rhodeus sericeus, spawning in freshwater mussels and consequences for offspring survival. Anim Beh. 2002;63:1029–1036.
Smith C, Reichard M. Females solicit sneakers to improve fertilisation success in the bitterling (Rhodeus sericeus). P Roy Soc B. 2005;272:1683–1688. PubMed PMC
Agbali M. Female mating decisions in the rose bitterling (Rhodeus ocellatus). PhD thesis, University of St Andrews, UK. 2011.
Kanoh Y. Reproductive success associated with territoriality, sneaking and grouping in male rose bitterlings, Rhodeus ocellatus (Pisces: Cyprinidae). Env Biol Fishes. 2000;57:143–154.
Smith C, Reichard M, Jurajda J, Przybylski M. The reproductive ecology of the European bitterling (Rhodeus sericeus). J Zool. 2004;262:107–124.
Sambrook JG, Figueroa F, Beck S. A genome-wide survey of Major Histocompatibility Complex (MHC) genes and their paralogues in zebrafish. BMC Genomics. 2005;6:152. PubMed PMC
Ottová E, Šimková A, Martin JF, Goüy de Bellocq J, Gelnar M, et al. Evolution and trans-species polymorphism of MHC class IIβ genes in cyprinid fish. Fish Shellfish Immun. 2005;18:199–222. PubMed
Kosakovsky Pond SL, Frost SDW. Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol. 2005;22:1208–1222. PubMed
Kosakovsky Pond SL, Frost SDW, Muse V. HyPhy: hypothesis testing using phylogenies. Bioinformatics. 2005;21:676–679. PubMed
Sandberg M, Eriksson L, Jonsson J, Sjostrom M, Wold S. New chemical descriptors relevant for the design of biologically active peptides. A multivariate characterization of 87 amino acids. J Med Chem. 1998;41:2481. PubMed
Forsberg LA, Dannewitz J, Petersson E, Grahn M. Influence of genetic dissimilarity in the reproductive success and mate choice of brown trout – females fishing for optimal MHC dissimilarity. J Evol Biol. 2007;20:1859–1869. PubMed
Eizaguirre C, Yeates SE, Lenz TL, Kalbe M, Milinski M. MHC-based mate choice combines good genes and maintenance of MHC polymorphism. Mol Ecol. 2009;18:3316–3329. PubMed
Landry C, Garant D, Duchesne P, Bernatchez L. “Good genes as heterozygosity”: the major histocompatibility complex and mate choice in Atlantic salmon (Salmo salar). P Roy Soc B. 2001;268:1279–1285. PubMed PMC
Reusch TBH, Haberli MA, Aeschlimann PB, Milinski M. Female sticklebacks count alleles in a strategy of sexual selection explaining Mhc polymorphism. Nature. 2001;414:300–302. PubMed
Bryja J, Galan M, Charbonnel N, Cosson JF M. Analysis of major histocompatibility complex class II gene in water voles using capillary electrophoresis-single stranded conformation polymorphism, Mol Ecol Notes. 2005;5:173–176.
Crawley MJ. The R Book. Chichester: Wiley. 942 pp. 2007.
Bartoń K. Package ‘MuMIn’ 1.7.7. 2012. Available: http://mumin.r-forge.r-project.org/MuMIn-manual.pdf. Accessed 2012 Jun 18.
Grueber CE, Nakagawa S, Laws RJ, Jamienson IG. Multimodel inference in ecology and evolution: challenges and solutions. J Evol Biol. 2011;24:699–711. PubMed
Santos PSC, Kellermann T, Uchanska-Ziegler B, Ziegler A. Genomic architecture of MHC-linked odorant receptor gene repertoires among 16 vertebrate species. Immunogenetics. 2010;62:569–584. PubMed
Milinski M, Griffiths S, Wegner KM, Reusch TBH, Haas-Assenbaum A, et al. Mate choice decisions of stickleback females predictably modified by MHC peptide ligands. Proc Natl Acad Sci USA. 2005;102:4414–4418. PubMed PMC
Rosenthal GG, Fitzsimmons JN, Woods KU, Gerlach G, Fisher HS. Tactical release of a sexually-selected pheromone in a swordtail fish. PLoS ONE. 2011;6:e16994. PubMed PMC
Smith C, Zhu Y, Liu H, Reichard M. Deceptive female oviposition behaviour elicits male ejaculation in the European bitterling. J Fish Biol. 2007;71:1841–1846.
Sherborne AL, Thom MD, Paterson S, Jury F, Ollier WER, et al. The genetic basis of inbreeding avoidance in house mice. Curr Biol. 2007;17:2061–2066. PubMed PMC
Lie HC, Rhodes G, Simmons LW. Genetic diversity revealed in human faces. Evolution. 2008;62:2473–2486. PubMed
Puurtinen M, Ketola T, Kotiaho JS. Genetic compatibility and sexual selection. Trends Ecol Evol. 2005;20:157–158. PubMed
Eizaguirre C, Lenz TL, Traulsen A, Milinski M. Speciation accelerated and stabilized by pleiotropic major Histocompatibility complex immuogenes. Ecol Lett. 2009;12:5–12. PubMed
Eizaguirre C, Lenz TL, Sommerfeld RD, Harrod C, Kalbe M, et al. Parasite diversity, patterns of MHC II variation and olfactory based mate choice in diverging three-spined stickleback ecotypes. Evol Ecol. 2011;25:605–622.