Microarray analysis of normal and abnormal chick ventricular myocardial development
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
P20 RR016434
NCRR NIH HHS - United States
P20 GM103499
NIGMS NIH HHS - United States
P30 GM103342
NIGMS NIH HHS - United States
P20 RR016461
NCRR NIH HHS - United States
RR16434
NCRR NIH HHS - United States
P20RR16461
NCRR NIH HHS - United States
PubMed
22827870
PubMed Central
PMC4112186
DOI
10.33549/physiolres.932379
PII: 932379
Knihovny.cz E-zdroje
- MeSH
- hemodynamika MeSH
- kuřecí embryo MeSH
- mikročipová analýza MeSH
- myokard metabolismus MeSH
- srdeční komory embryologie metabolismus MeSH
- srdeční síně embryologie metabolismus MeSH
- transkriptom MeSH
- zvířata MeSH
- Check Tag
- kuřecí embryo MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
The left and right ventricle originate from distinct parts of the cardiac tube, and several genes are known to be differentially expressed in these compartments. The aims of this study were to determine developmental differences in gene expression between the left and right ventricle, and to assess the effect of altered hemodynamic loading. RNA was extracted from isolated left and right normal chick embryonic ventricles at embryonic day 6, 8, and 10, and from day 8 left atrial ligated hearts with hypoplastic left and dilated right ventricles. cRNA was hybridized to Affymetrix Chicken Genome array according to manufacturer protocols. Microarray analysis identified 302 transcripts that were differentially expressed between the left and right ventricle. Comparative analysis detected 91 genes that were different in left ventricles of ligated hearts compared to age-matched ventricles, while 66 were different in the right ones. A large number of the changes could be interpreted as a delay of normal maturation. The approach described in this study could be used as one of the measures to gauge success of surgical procedures for congenital heart disease and help in determining the optimal time frame for intervention to prevent onset of irreversible changes.
Zobrazit více v PubMed
Aanhaanen WT, Brons JF, Dominguez JN, Rana MS, Norden J, Airik R, Wakker V, De Gier-De Vries C, Brown NA, Kispert A, Moorman AF, Christoffels VM. The Tbx2+ primary myocardium of the atrioventricular canal forms the atrioventricular node and the base of the left ventricle. Circ Res. 2009;104:1267–1274. PubMed
Agnisola C, Tota B. Structure and function of the fish cardiac ventricle: flexibility and limitations. Cardioscience. 1994;5:145–153. PubMed
Allan LD, Maxwell DJ, Carminati M, Tynan MJ. Survival after fetal aortic balloon valvoplasty. Ultrasound Obstet Gynecol. 1995;5:90–91. PubMed
Argraves GL, Jani S, Barth JL, Argraves WS. ArrayQuest: a web resource for the analysis of DNA microarray data. BMC Bioinformatics. 2005;6:287. PubMed PMC
Becker DL, Cook JE, Davies CS, Evans WH, Gourdie RG. Expression of major gap junction connexin types in the working myocardium of eight chordates. Cell Biol Int. 1998;22:527–543. PubMed
DeAlmeida A, McQuinn T, Sedmera D. Increased ventricular preload is compensated by myocyte proliferation in normal and hypoplastic fetal chick left ventricle. Circ Res. 2007;100:1363–1370. PubMed
Di Lisi R, Sandri C, Franco D, Ausoni S, Moorman AF, Schiaffino S. An atrioventricular canal domain defined by cardiac troponin I transgene expression in the embryonic myocardium. Anat Embryol (Berl) 2000;202:95–101. PubMed
Foker JE, Berry J, Steinberger J. Ventricular growth stimulation to achieve two-ventricular repair in unbalanced common atrioventricular canal. Prog Pediatr Cardiol. 1999;10:173–186.
Forfar JO, Miller RA, Bain AD, Macleod W. Endocardial fibroelastosis. Br Med J. 1964;2:7–12. PubMed PMC
Hirzel HO, Tuchschmid CR, Schneider J, Krayenbuehl HP, Schaub MC. Relationship between myosin isoenzyme composition, hemodynamics, and myocardial structure in various forms of human cardiac hypertrophy. Circ Res. 1985;57:729–740. PubMed
Huang DAW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009a;37:1–13. PubMed PMC
Huang DAW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009b;4:44–57. PubMed
Izumo S, Nadal-Ginard B, Mahdavi V. Protooncogene induction and reprogramming of cardiac gene expression produced by pressure overload. Proc Natl Acad Sci U S A. 1988;85:339–343. PubMed PMC
Kamino K, Hirota A, Fujii S. Localization of pacemaking activity in early embryonic heart monitored using voltage-sensitive dye. Nature. 1981;290:595–597. PubMed
Kelly RG, Buckingham ME. The anterior heart-forming field: voyage to the arterial pole of the heart. Trends Genet. 2002;18:210–216. PubMed
Kirby ML. Cardiac Development. Oxford University Press; New York: 2007. p. 273.
Makikallio K, Mcelhinney DB, Levine JC, Marx GR, Colan SD, Marshall AC, Lock JE, Marcus EN, Tworetzky W. Fetal aortic valve stenosis and the evolution of hypoplastic left heart syndrome: patient selection for fetal intervention. Circulation. 2006;113:1401–1405. PubMed
Manner J. Cardiac looping in the chick embryo: a morphological review with special reference to terminological and biomechanical aspects of the looping process. Anat Rec. 2000;259:248–262. PubMed
Marshall AC, Van Der Velde ME, Tworetzky W, Gomez CA, Wilkins-Haug L, Benson CB, Jennings RW, Lock JE. Creation of an atrial septal defect in utero for fetuses with hypoplastic left heart syndrome and intact or highly restrictive atrial septum. Circulation. 2004;110:253–258. PubMed
Maxwell D, Allan L, Tynan MJ. Balloon dilatation of the aortic valve in the fetus: a report of two cases. Br Heart J. 1991;65:256–258. PubMed PMC
McElhinney DB, Marshall AC, Wilkins-Haug LE, Brown DW, Benson CB, Silva V, Marx GR, Mizrahi-Arnaud A, Lock JE, Tworetzky W. Predictors of technical success and postnatal biventricular outcome after in utero aortic valvuloplasty for aortic stenosis with evolving hypoplastic left heart syndrome. Circulation. 2009;120:1482–1490. PubMed PMC
McQuinn TC, Bratoeva M, DeAlmeida A, Remond M, Thompson RP, Sedmera D. High-frequency ultrasonographic imaging of avian cardiovascular development. Dev Dyn. 2007;236:3503–3513. PubMed
Minot CS. On a hitherto unrecognised circulation without capillaries in the organs of Vertebrata. Proc Boston Soc Nat Hist. 1901;29:185–215. PubMed PMC
Miquerol L, Meysen S, Mangoni M, Bois P, Van Rijen HV, Abran P, Jongsma H, Nargeot J, Gros D. Architectural and functional asymmetry of the His-Purkinje system of the murine heart. Cardiovasc Res. 2004;63:77–86. PubMed
Moorman AF, Christoffels VM. Cardiac chamber formation: development, genes, and evolution. Physiol Rev. 2003;83:1223–1267. PubMed
Ostadal B, Schiebler TH. The terminal blood bed in the heart of fish (in German) Z Anat Entwicklungsgesch. 1971;134:101–110. PubMed
Rana MS, Horsten NC, Tesink-Taekema S, Lamers WH, Moorman AF, Van Den Hoff MJ. Trabeculated right ventricular free wall in the chicken heart forms by ventricularization of the myocardium initially forming the outflow tract. Circ Res. 2007;100:1000–1007. PubMed
Sedmera D. Form follows function: developmental and physiological view on ventricular myocardial architecture. Eur J Cardiothorac Surg. 2005;28:526–528. PubMed PMC
Sedmera D. Function and form in the developing cardiovascular system. Cardiovasc Res. 2011;91:252–259. PubMed
Sedmera D, Cook AC, Shirali G, McQuinn TC. Current issues and perspectives in hypoplasia of the left heart. Cardiol Young. 2005;15:56–72. PubMed
Sedmera D, Hu N, Weiss KM, Keller BB, Denslow S, Thompson RP. Cellular changes in experimental left heart hypoplasia. Anat Rec. 2002;267:137–145. PubMed
Sedmera D, Pexieder T, Hu N, Clark EB. Developmental changes in the myocardial architecture of the chick. Anat Rec. 1997;248:421–432. PubMed
Sedmera D, Pexieder T, Rychterova V, Hu N, Clark EB. Remodeling of chick embryonic ventricular myoarchitecture under experimentally changed loading conditions. Anat Rec. 1999;254:238–252. PubMed
Sedmera D, Pexieder T, Vuillemin M, Thompson RP, Anderson RH. Developmental patterning of the myocardium. Anat Rec. 2000;258:319–337. PubMed
Sedmera D, Reckova M, DeAlmeida A, Sedmerova M, Biermann M, Volejnik J, Sarre A, Raddatz E, McCarthy RA, Gourdie RG, Thompson RP. Functional and morphological evidence for a ventricular conduction system in the zebrafish and Xenopus heart. Am J Physiol Heart Circ Physiol. 2003;284:H1152–H1160. PubMed
Tota B, Cimini V, Salvatore G, Zummo G. Comparative study of the arterial and lacunary systems of the ventricular myocardium of elasmobranch and teleost fishes. Am J Anat. 1983;167:15–32. PubMed
Tworetzky W, Wilkins-Haug L, Jennings RW, Van Der Velde ME, Marshall AC, Marx GR, Colan SD, Benson CB, Lock JE, Perry SB. Balloon dilation of severe aortic stenosis in the fetus: potential for prevention of hypoplastic left heart syndrome: candidate selection, technique, and results of successful intervention. Circulation. 2004;110:2125–2131. PubMed
Wu Z, Irizarry RA. Stochastic models inspired by hybridization theory for short oligonucleotide arrays. J Comput Biol. 2005;12:882–893. PubMed
HLHS: Power of the Chick Model
Proteomic analysis of cardiac ventricles: baso-apical differences