HLHS: Power of the Chick Model
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
22-05271S
Czech Science Foundation
NU21-02-00402
Czech Health Research Council
PROGRES Q38, COOPERATION
Charles University
RVO: 67985823
Czech Academy of Sciences
PubMed
35448089
PubMed Central
PMC9031965
DOI
10.3390/jcdd9040113
PII: jcdd9040113
Knihovny.cz E-resources
- Keywords
- embryonic myocardium, hemodynamic alteration, left atrial ligation, left ventricular hypoplasia, myocyte proliferation,
- Publication type
- Journal Article MeSH
- Review MeSH
BACKGROUND: Hypoplastic left heart syndrome (HLHS) is a rare but deadly form of human congenital heart disease, most likely of diverse etiologies. Hemodynamic alterations such as those resulting from premature foramen ovale closure or aortic stenosis are among the possible pathways. METHODS: The information gained from studies performed in the chick model of HLHS is reviewed. Altered hemodynamics leads to a decrease in myocyte proliferation causing hypoplasia of the left heart structures and their functional changes. CONCLUSIONS: Although the chick phenocopy of HLHS caused by left atrial ligation is certainly not representative of all the possible etiologies, it provides many useful hints regarding the plasticity of the genetically normal developing myocardium under altered hemodynamic loading leading to the HLHS phenotype, and even suggestions on some potential strategies for prenatal repair.
See more in PubMed
Sedmera D., Cook A.C., Shirali G., McQuinn T.C. Current issues and perspectives in hypoplasia of the left heart. Cardiol. Young. 2005;15:56–72. doi: 10.1017/S1047951105000132. PubMed DOI
Fishman N.H., Hof R.B., Rudolph A.M., Heymann M.A. Models of congenital heart disease in fetal lambs. Circulation. 1978;58:354–364. doi: 10.1161/01.CIR.58.2.354. PubMed DOI
Rychter Z., Rychterova V., Lemez L. Formation of the heart loop and proliferation structure of its wall as a base for ventricular septation. Herz. 1979;4:86–90. PubMed
Rychter Z., Rychterova V. Angio- and myoarchitecture of the heart wall under normal and experimentally changed morphogenesis. In: Pexieder T., editor. Perspectives in Cardiovascular Research. Volume 5. Raven Press; New York, NY, USA: 1981. pp. 431–452.
Harh J.Y., Paul M.H., Gallen W.J., Friedberg D.Z., Kaplan S. Experimental production of hypoplastic left heart syndrome in the chick embryo. Am. J. Cardiol. 1973;31:51–56. doi: 10.1016/0002-9149(73)90810-2. PubMed DOI
Sedmera D., Pexieder T., Rychterova V., Hu N., Clark E.B. Remodeling of chick embryonic ventricular myoarchitecture under experimentally changed loading conditions. Anat. Rec. 1999;254:238–252. doi: 10.1002/(SICI)1097-0185(19990201)254:2<238::AID-AR10>3.0.CO;2-V. PubMed DOI
Rahman A., DeYoung T., Cahill L.S., Yee Y., Debebe S.K., Botelho O., Seed M., Chaturvedi R.R., Sled J.G. A mouse model of hypoplastic left heart syndrome demonstrating left heart hypoplasia and retrograde aortic arch flow. Dis. Model Mech. 2021;14:dmm049077. doi: 10.1242/dmm.049077. PubMed DOI PMC
Kockova R., Svatunkova J., Novotny J., Hejnova L., Ostadal B., Sedmera D. Heart rate changes mediate the embryotoxic effect of antiarrhythmic drugs in the chick embryo. Am. J. Physiol. Heart Circ. Physiol. 2013;304:H895–H902. doi: 10.1152/ajpheart.00679.2012. PubMed DOI
deAlmeida A., McQuinn T., Sedmera D. Increased ventricular preload is compensated by myocyte proliferation in normal and hypoplastic fetal chick left ventricle. Circ. Res. 2007;100:1363–1370. doi: 10.1161/01.RES.0000266606.88463.cb. PubMed DOI
Sedmera D., Hu N., Weiss K.M., Keller B.B., Denslow S., Thompson R.P. Cellular changes in experimental left heart hypoplasia. Anat. Rec. 2002;267:137–145. doi: 10.1002/ar.10098. PubMed DOI
Sedmera D., Pexieder T., Vuillemin M., Thompson R.P., Anderson R.H. Developmental patterning of the myocardium. Anat. Rec. 2000;258:319–337. doi: 10.1002/(SICI)1097-0185(20000401)258:4<319::AID-AR1>3.0.CO;2-O. PubMed DOI
de Almeida A., Sedmera D. Fibroblast Growth Factor-2 regulates proliferation of cardiac myocytes in normal and hypoplastic left ventricles in the developing chick. Cardiol. Young. 2009;19:159–169. doi: 10.1017/S1047951109003552. PubMed DOI
McQuinn T.C., Bratoeva M., Dealmeida A., Remond M., Thompson R.P., Sedmera D. High-frequency ultrasonographic imaging of avian cardiovascular development. Dev. Dyn. 2007;236:3503–3513. doi: 10.1002/dvdy.21357. PubMed DOI
Marshall A.C., van der Velde M.E., Tworetzky W., Gomez C.A., Wilkins-Haug L., Benson C.B., Jennings R.W., Lock J.E. Creation of an atrial septal defect in utero for fetuses with hypoplastic left heart syndrome and intact or highly restrictive atrial septum. Circulation. 2004;110:253–258. doi: 10.1161/01.CIR.0000135471.17922.17. PubMed DOI
Tworetzky W., Wilkins-Haug L., Jennings R.W., van der Velde M.E., Marshall A.C., Marx G.R., Colan S.D., Benson C.B., Lock J.E., Perry S.B. Balloon dilation of severe aortic stenosis in the fetus: Potential for prevention of hypoplastic left heart syndrome: Candidate selection, technique, and results of successful intervention. Circulation. 2004;110:2125–2131. doi: 10.1161/01.CIR.0000144357.29279.54. PubMed DOI
Marshall A.C., Tworetzky W., Bergersen L., McElhinney D.B., Benson C.B., Jennings R.W., Wilkins-Haug L.E., Marx G.R., Lock J.E. Aortic valvuloplasty in the fetus: Technical characteristics of successful balloon dilation. J. Pediatr. 2005;147:535–539. doi: 10.1016/j.jpeds.2005.04.055. PubMed DOI
Makikallio K., McElhinney D.B., Levine J.C., Marx G.R., Colan S.D., Marshall A.C., Lock J.E., Marcus E.N., Tworetzky W. Fetal aortic valve stenosis and the evolution of hypoplastic left heart syndrome: Patient selection for fetal intervention. Circulation. 2006;113:1401–1405. doi: 10.1161/CIRCULATIONAHA.105.588194. PubMed DOI
Zhang N., Mustin D., Reardon W., Almeida A.D., Mozdziak P., Mrug M., Eisenberg L.M., Sedmera D. Blood-borne stem cells differentiate into vascular and cardiac lineages during normal development. Stem Cells Dev. 2006;15:17–28. doi: 10.1089/scd.2006.15.17. PubMed DOI
Chapman S.C., Lawson A., Macarthur W.C., Wiese R.J., Loechel R.H., Burgos-Trinidad M., Wakefield J.K., Ramabhadran R., Mauch T.J., Schoenwolf G.C. Ubiquitous GFP expression in transgenic chickens using a lentiviral vector. Development. 2005;132:935–940. doi: 10.1242/dev.01652. PubMed DOI
Poelmann R.E., Gittenberger-de Groot A.C., Mentink M.M., Bokenkamp R., Hogers B. Development of the cardiac coronary vascular endothelium, studied with antiendothelial antibodies, in chicken-quail chimeras. Circ. Res. 1993;73:559–568. doi: 10.1161/01.RES.73.3.559. PubMed DOI
Tobita K., Keller B.B. Right and left ventricular wall deformation patterns in normal and left heart hypoplasia chick embryos. Am. J. Physiol. Heart Circ. Physiol. 2000;279:H959–H969. doi: 10.1152/ajpheart.2000.279.3.H959. PubMed DOI
Schroder E.A., Tobita K., Tinney J.P., Foldes J.K., Keller B.B. Microtubule involvement in the adaptation to altered mechanical load in developing chick myocardium. Circ. Res. 2002;91:353–359. doi: 10.1161/01.RES.0000030179.78135.FA. PubMed DOI
Tobita K., Schroder E.A., Tinney J.P., Garrison J.B., Keller B.B. Regional passive ventricular stress-strain relations during development of altered loads in chick embryo. Am. J. Physiol. Heart Circ. Physiol. 2002;282:H2386–H2396. doi: 10.1152/ajpheart.00879.2001. PubMed DOI
Hu N., Christensen D.A., Agrawal A.K., Beaumont C., Clark E.B., Hawkins J.A. Dependence of aortic arch morphogenesis on intracardiac blood flow in the left atrial ligated chick embryo. Anat. Rec. 2009;292:652–660. doi: 10.1002/ar.20885. PubMed DOI
Ho S., Chan W.X., Yap C.H. Fluid mechanics of the left atrial ligation chick embryonic model of hypoplastic left heart syndrome. Biomech. Model Mechanobiol. 2021;20:1337–1351. doi: 10.1007/s10237-021-01447-3. PubMed DOI PMC
Reckova M., Rosengarten C., deAlmeida A., Stanley C.P., Wessels A., Gourdie R.G., Thompson R.P., Sedmera D. Hemodynamics is a key epigenetic factor in development of the cardiac conduction system. Circ. Res. 2003;93:77–85. doi: 10.1161/01.RES.0000079488.91342.B7. PubMed DOI
Hall C.E., Hurtado R., Hewett K.W., Shulimovich M., Poma C.P., Reckova M., Justus C., Pennisi D.J., Tobita K., Sedmera D., et al. Hemodynamic-dependent patterning of endothelin converting enzyme 1 expression and differentiation of impulse-conducting Purkinje fibers in the embryonic heart. Development. 2004;131:581–592. doi: 10.1242/dev.00947. PubMed DOI
Pesevski Z., Kvasilova A., Stopkova T., Nanka O., Drobna Krejci E., Buffinton C., Kockova R., Eckhardt A., Sedmera D. Endocardial Fibroelastosis is Secondary to Hemodynamic Alterations in the Chick Embryonic Model of Hypoplastic Left Heart Syndrome. Dev. Dyn. 2018;247:509–520. doi: 10.1002/dvdy.24521. PubMed DOI
Krejci E., Pesevski Z., DeAlmeida A.C., Mrug M., Fresco V.M., Argraves W.S., Barth J.L., Cui X., Sedmera D. Microarray analysis of normal and abnormal chick ventricular myocardial development. Physiol. Res. 2012;61((Suppl. 1)):S137–S144. doi: 10.33549/physiolres.932379. PubMed DOI PMC
Krane M., Dressen M., Santamaria G., My I., Schneider C.M., Dorn T., Laue S., Mastantuono E., Berutti R., Rawat H., et al. Sequential Defects in Cardiac Lineage Commitment and Maturation Cause Hypoplastic Left Heart Syndrome. Circulation. 2021;144:1409–1428. doi: 10.1161/CIRCULATIONAHA.121.056198. PubMed DOI PMC
Antin P.B., Fallon J.F., Schoenwolf G.C. The chick embryo rules (still)! Dev. Dyn. 2004;229:413. doi: 10.1002/dvdy.20014. PubMed DOI