• This record comes from PubMed

HLHS: Power of the Chick Model

. 2022 Apr 11 ; 9 (4) : . [epub] 20220411

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article, Review

Grant support
22-05271S Czech Science Foundation
NU21-02-00402 Czech Health Research Council
PROGRES Q38, COOPERATION Charles University
RVO: 67985823 Czech Academy of Sciences

BACKGROUND: Hypoplastic left heart syndrome (HLHS) is a rare but deadly form of human congenital heart disease, most likely of diverse etiologies. Hemodynamic alterations such as those resulting from premature foramen ovale closure or aortic stenosis are among the possible pathways. METHODS: The information gained from studies performed in the chick model of HLHS is reviewed. Altered hemodynamics leads to a decrease in myocyte proliferation causing hypoplasia of the left heart structures and their functional changes. CONCLUSIONS: Although the chick phenocopy of HLHS caused by left atrial ligation is certainly not representative of all the possible etiologies, it provides many useful hints regarding the plasticity of the genetically normal developing myocardium under altered hemodynamic loading leading to the HLHS phenotype, and even suggestions on some potential strategies for prenatal repair.

See more in PubMed

Sedmera D., Cook A.C., Shirali G., McQuinn T.C. Current issues and perspectives in hypoplasia of the left heart. Cardiol. Young. 2005;15:56–72. doi: 10.1017/S1047951105000132. PubMed DOI

Fishman N.H., Hof R.B., Rudolph A.M., Heymann M.A. Models of congenital heart disease in fetal lambs. Circulation. 1978;58:354–364. doi: 10.1161/01.CIR.58.2.354. PubMed DOI

Rychter Z., Rychterova V., Lemez L. Formation of the heart loop and proliferation structure of its wall as a base for ventricular septation. Herz. 1979;4:86–90. PubMed

Rychter Z., Rychterova V. Angio- and myoarchitecture of the heart wall under normal and experimentally changed morphogenesis. In: Pexieder T., editor. Perspectives in Cardiovascular Research. Volume 5. Raven Press; New York, NY, USA: 1981. pp. 431–452.

Harh J.Y., Paul M.H., Gallen W.J., Friedberg D.Z., Kaplan S. Experimental production of hypoplastic left heart syndrome in the chick embryo. Am. J. Cardiol. 1973;31:51–56. doi: 10.1016/0002-9149(73)90810-2. PubMed DOI

Sedmera D., Pexieder T., Rychterova V., Hu N., Clark E.B. Remodeling of chick embryonic ventricular myoarchitecture under experimentally changed loading conditions. Anat. Rec. 1999;254:238–252. doi: 10.1002/(SICI)1097-0185(19990201)254:2<238::AID-AR10>3.0.CO;2-V. PubMed DOI

Rahman A., DeYoung T., Cahill L.S., Yee Y., Debebe S.K., Botelho O., Seed M., Chaturvedi R.R., Sled J.G. A mouse model of hypoplastic left heart syndrome demonstrating left heart hypoplasia and retrograde aortic arch flow. Dis. Model Mech. 2021;14:dmm049077. doi: 10.1242/dmm.049077. PubMed DOI PMC

Kockova R., Svatunkova J., Novotny J., Hejnova L., Ostadal B., Sedmera D. Heart rate changes mediate the embryotoxic effect of antiarrhythmic drugs in the chick embryo. Am. J. Physiol. Heart Circ. Physiol. 2013;304:H895–H902. doi: 10.1152/ajpheart.00679.2012. PubMed DOI

deAlmeida A., McQuinn T., Sedmera D. Increased ventricular preload is compensated by myocyte proliferation in normal and hypoplastic fetal chick left ventricle. Circ. Res. 2007;100:1363–1370. doi: 10.1161/01.RES.0000266606.88463.cb. PubMed DOI

Sedmera D., Hu N., Weiss K.M., Keller B.B., Denslow S., Thompson R.P. Cellular changes in experimental left heart hypoplasia. Anat. Rec. 2002;267:137–145. doi: 10.1002/ar.10098. PubMed DOI

Sedmera D., Pexieder T., Vuillemin M., Thompson R.P., Anderson R.H. Developmental patterning of the myocardium. Anat. Rec. 2000;258:319–337. doi: 10.1002/(SICI)1097-0185(20000401)258:4<319::AID-AR1>3.0.CO;2-O. PubMed DOI

de Almeida A., Sedmera D. Fibroblast Growth Factor-2 regulates proliferation of cardiac myocytes in normal and hypoplastic left ventricles in the developing chick. Cardiol. Young. 2009;19:159–169. doi: 10.1017/S1047951109003552. PubMed DOI

McQuinn T.C., Bratoeva M., Dealmeida A., Remond M., Thompson R.P., Sedmera D. High-frequency ultrasonographic imaging of avian cardiovascular development. Dev. Dyn. 2007;236:3503–3513. doi: 10.1002/dvdy.21357. PubMed DOI

Marshall A.C., van der Velde M.E., Tworetzky W., Gomez C.A., Wilkins-Haug L., Benson C.B., Jennings R.W., Lock J.E. Creation of an atrial septal defect in utero for fetuses with hypoplastic left heart syndrome and intact or highly restrictive atrial septum. Circulation. 2004;110:253–258. doi: 10.1161/01.CIR.0000135471.17922.17. PubMed DOI

Tworetzky W., Wilkins-Haug L., Jennings R.W., van der Velde M.E., Marshall A.C., Marx G.R., Colan S.D., Benson C.B., Lock J.E., Perry S.B. Balloon dilation of severe aortic stenosis in the fetus: Potential for prevention of hypoplastic left heart syndrome: Candidate selection, technique, and results of successful intervention. Circulation. 2004;110:2125–2131. doi: 10.1161/01.CIR.0000144357.29279.54. PubMed DOI

Marshall A.C., Tworetzky W., Bergersen L., McElhinney D.B., Benson C.B., Jennings R.W., Wilkins-Haug L.E., Marx G.R., Lock J.E. Aortic valvuloplasty in the fetus: Technical characteristics of successful balloon dilation. J. Pediatr. 2005;147:535–539. doi: 10.1016/j.jpeds.2005.04.055. PubMed DOI

Makikallio K., McElhinney D.B., Levine J.C., Marx G.R., Colan S.D., Marshall A.C., Lock J.E., Marcus E.N., Tworetzky W. Fetal aortic valve stenosis and the evolution of hypoplastic left heart syndrome: Patient selection for fetal intervention. Circulation. 2006;113:1401–1405. doi: 10.1161/CIRCULATIONAHA.105.588194. PubMed DOI

Zhang N., Mustin D., Reardon W., Almeida A.D., Mozdziak P., Mrug M., Eisenberg L.M., Sedmera D. Blood-borne stem cells differentiate into vascular and cardiac lineages during normal development. Stem Cells Dev. 2006;15:17–28. doi: 10.1089/scd.2006.15.17. PubMed DOI

Chapman S.C., Lawson A., Macarthur W.C., Wiese R.J., Loechel R.H., Burgos-Trinidad M., Wakefield J.K., Ramabhadran R., Mauch T.J., Schoenwolf G.C. Ubiquitous GFP expression in transgenic chickens using a lentiviral vector. Development. 2005;132:935–940. doi: 10.1242/dev.01652. PubMed DOI

Poelmann R.E., Gittenberger-de Groot A.C., Mentink M.M., Bokenkamp R., Hogers B. Development of the cardiac coronary vascular endothelium, studied with antiendothelial antibodies, in chicken-quail chimeras. Circ. Res. 1993;73:559–568. doi: 10.1161/01.RES.73.3.559. PubMed DOI

Tobita K., Keller B.B. Right and left ventricular wall deformation patterns in normal and left heart hypoplasia chick embryos. Am. J. Physiol. Heart Circ. Physiol. 2000;279:H959–H969. doi: 10.1152/ajpheart.2000.279.3.H959. PubMed DOI

Schroder E.A., Tobita K., Tinney J.P., Foldes J.K., Keller B.B. Microtubule involvement in the adaptation to altered mechanical load in developing chick myocardium. Circ. Res. 2002;91:353–359. doi: 10.1161/01.RES.0000030179.78135.FA. PubMed DOI

Tobita K., Schroder E.A., Tinney J.P., Garrison J.B., Keller B.B. Regional passive ventricular stress-strain relations during development of altered loads in chick embryo. Am. J. Physiol. Heart Circ. Physiol. 2002;282:H2386–H2396. doi: 10.1152/ajpheart.00879.2001. PubMed DOI

Hu N., Christensen D.A., Agrawal A.K., Beaumont C., Clark E.B., Hawkins J.A. Dependence of aortic arch morphogenesis on intracardiac blood flow in the left atrial ligated chick embryo. Anat. Rec. 2009;292:652–660. doi: 10.1002/ar.20885. PubMed DOI

Ho S., Chan W.X., Yap C.H. Fluid mechanics of the left atrial ligation chick embryonic model of hypoplastic left heart syndrome. Biomech. Model Mechanobiol. 2021;20:1337–1351. doi: 10.1007/s10237-021-01447-3. PubMed DOI PMC

Reckova M., Rosengarten C., deAlmeida A., Stanley C.P., Wessels A., Gourdie R.G., Thompson R.P., Sedmera D. Hemodynamics is a key epigenetic factor in development of the cardiac conduction system. Circ. Res. 2003;93:77–85. doi: 10.1161/01.RES.0000079488.91342.B7. PubMed DOI

Hall C.E., Hurtado R., Hewett K.W., Shulimovich M., Poma C.P., Reckova M., Justus C., Pennisi D.J., Tobita K., Sedmera D., et al. Hemodynamic-dependent patterning of endothelin converting enzyme 1 expression and differentiation of impulse-conducting Purkinje fibers in the embryonic heart. Development. 2004;131:581–592. doi: 10.1242/dev.00947. PubMed DOI

Pesevski Z., Kvasilova A., Stopkova T., Nanka O., Drobna Krejci E., Buffinton C., Kockova R., Eckhardt A., Sedmera D. Endocardial Fibroelastosis is Secondary to Hemodynamic Alterations in the Chick Embryonic Model of Hypoplastic Left Heart Syndrome. Dev. Dyn. 2018;247:509–520. doi: 10.1002/dvdy.24521. PubMed DOI

Krejci E., Pesevski Z., DeAlmeida A.C., Mrug M., Fresco V.M., Argraves W.S., Barth J.L., Cui X., Sedmera D. Microarray analysis of normal and abnormal chick ventricular myocardial development. Physiol. Res. 2012;61((Suppl. 1)):S137–S144. doi: 10.33549/physiolres.932379. PubMed DOI PMC

Krane M., Dressen M., Santamaria G., My I., Schneider C.M., Dorn T., Laue S., Mastantuono E., Berutti R., Rawat H., et al. Sequential Defects in Cardiac Lineage Commitment and Maturation Cause Hypoplastic Left Heart Syndrome. Circulation. 2021;144:1409–1428. doi: 10.1161/CIRCULATIONAHA.121.056198. PubMed DOI PMC

Antin P.B., Fallon J.F., Schoenwolf G.C. The chick embryo rules (still)! Dev. Dyn. 2004;229:413. doi: 10.1002/dvdy.20014. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...