Increased T regulatory cells are associated with adverse clinical features and predict progression in multiple myeloma

. 2012 ; 7 (10) : e47077. [epub] 20121010

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid23071717

BACKGROUND: Regulatory T (Treg) cells play an important role in the maintenance of immune system homeostasis. Multiple myeloma (MM) is a plasma cell disorder frequently associated with impaired immune cell numbers and functions. METHODS: We analyzed Treg cells in peripheral blood (n = 207) and bone marrow (n = 202) of pre-malignant and malignant MM patients using flow cytometry. Treg cells and their subsets from MM patients and healthy volunteers were functionally evaluated for their suppressive property. A cohort of 25 patients was analyzed for lymphocytes, CD4 T cells and Treg cells before and after treatment with cyclophosphamide, thalidomide plus dexamethasone (CTD). RESULTS: We found elevated frequencies of Treg cells in newly diagnosed (P<0.01) and relapsed MM patients (P<0.0001) compared to healthy volunteers. Also, Treg subsets including naïve (P = 0.015) and activated (P = 0.036) Treg cells were significantly increased in MM patients compared to healthy volunteers. Functional studies showed that Treg cells and their subsets from both MM and healthy volunteers were similar in their inhibitory function. Significantly increased frequencies of Treg cells were found in MM patients with adverse clinical features such as hypercalcemia (>10 mg/dL), decreased normal plasma cell (≤5%) count and IgA myeloma subtype. We also showed that MM patients with ≥5% of Treg cells had inferior time to progression (TTP) (13 months vs. median not reached; P = 0.013). Furthermore, we demonstrated the prognostic value of Treg cells in prediction of TTP by Cox regression analysis (P = 0.045). CTD treatment significantly reduced frequencies of CD4 T cells (P = 0.001) and Treg cells (P = 0.018) but not Treg cells/CD4 T cells ratio compared to pre-treatment. CONCLUSIONS: Our study showed immune deregulation in MM patients which is evidenced by elevated level of functionally active Treg cells and patients with increased Treg cells have higher risk of progression.

Zobrazit více v PubMed

Kyle RA, Rajkumar SV (2009) Criteria for diagnosis, staging, risk stratification and response assessment of multiple myeloma. Leukemia 23: 3–9. PubMed PMC

Raja KR, Kovarova L, Hajek R (2010) Review of phenotypic markers used in flow cytometric analysis of MGUS and MM, and applicability of flow cytometry in other plasma cell disorders. Br J Haematol 149: 334–351. PubMed

Pratt G, Goodyear O, Moss P (2007) Immunodeficiency and immunotherapy in multiple myeloma. Br J Haematol 138: 563–579. PubMed

Kay NE, Leong TL, Bone N, Vesole DH, Greipp PR, et al. (2001) Blood levels of immune cells predict survival in myeloma patients: results of an Eastern Cooperative Oncology Group phase 3 trial for newly diagnosed multiple myeloma patients. Blood 98: 23–28. PubMed

Wolf AM, Wolf D, Steurer M, Gastl G, Gunsilius E, et al. (2003) Increase of regulatory T cells in the peripheral blood of cancer patients. Clin Cancer Res 9: 606–612. PubMed

Bates GJ, Fox SB, Han C, Leek RD, Garcia JF, et al. (2006) Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J Clin Oncol 24: 5373–5380. PubMed

Beyer M, Kochanek M, Darabi K, Popov A, Jensen M, et al. (2005) Reduced frequencies and suppressive function of CD4+CD25hi regulatory T cells in patients with chronic lymphocytic leukemia after therapy with fludarabine. Blood 106: 2018–2025. PubMed

Tang Q, Bluestone JA (2008) The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. Nat Immunol 9: 239–244. PubMed PMC

Knutson KL, Disis ML, Salazar LG (2007) CD4 regulatory T cells in human cancer pathogenesis. Cancer Immunol Immunother 56: 271–285. PubMed PMC

Curotto de Lafaille MA, Lafaille JJ (2009) Natural and adaptive foxp3+ regulatory T cells: more of the same or a division of labor? Immunity 30: 626–635. PubMed

Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, et al. (2008) CTLA-4 control over Foxp3+ regulatory T cell function. Science 322: 271–275. PubMed

Huang CT, Workman CJ, Flies D, Pan X, Marson AL, et al. (2004) Role of LAG-3 in regulatory T cells. Immunity 21: 503–513. PubMed

Grossman WJ, Verbsky JW, Tollefsen BL, Kemper C, Atkinson JP, et al. (2004) Differential expression of granzymes A and B in human cytotoxic lymphocyte subsets and T regulatory cells. Blood 104: 2840–2848. PubMed

Strauss L, Bergmann C, Whiteside TL (2009) Human circulating CD4+CD25highFoxp3+ regulatory T cells kill autologous CD8+ but not CD4+ responder cells by Fas-mediated apoptosis. J Immunol 182: 1469–1480. PubMed PMC

Ito T, Hanabuchi S, Wang YH, Park WR, Arima K, et al. (2008) Two functional subsets of FOXP3+ regulatory T cells in human thymus and periphery. Immunity 28: 870–880. PubMed PMC

Roncarolo MG, Gregori S, Battaglia M, Bacchetta R, Fleischhauer K, et al. (2006) Interleukin-10-secreting type 1 regulatory T cells in rodents and humans. Immunological reviews 212: 28–50. PubMed

Chen W, Jin W, Hardegen N, Lei KJ, Li L, et al. (2003) Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 198: 1875–1886. PubMed PMC

Garin MI, Chu CC, Golshayan D, Cernuda-Morollon E, Wait R, et al. (2007) Galectin-1: a key effector of regulation mediated by CD4+CD25+ T cells. Blood 109: 2058–2065. PubMed

Pandiyan P, Zheng L, Ishihara S, Reed J, Lenardo MJ (2007) CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nat Immunol 8: 1353–1362. PubMed

Sakaguchi S, Miyara M, Costantino CM, Hafler DA (2010) FOXP3+ regulatory T cells in the human immune system. Nature reviews Immunology 10: 490–500. PubMed

Beyer M, Kochanek M, Giese T, Endl E, Weihrauch MR, et al. (2006) In vivo peripheral expansion of naive CD4+CD25high FoxP3+ regulatory T cells in patients with multiple myeloma. Blood 107: 3940–3949. PubMed

Brimnes MK, Vangsted AJ, Knudsen LM, Gimsing P, Gang AO, et al. (2010) Increased level of both CD4+FOXP3+ regulatory T cells and CD14+HLA-DR−/low myeloid-derived suppressor cells and decreased level of dendritic cells in patients with multiple myeloma. Scand J Immunol 72: 540–547. PubMed

Feyler S, von Lilienfeld-Toal M, Jarmin S, Marles L, Rawstron A, et al. (2009) CD4(+)CD25(+)FoxP3(+) regulatory T cells are increased whilst CD3(+)CD4(−)CD8(−) alphabetaTCR(+) Double Negative T cells are decreased in the peripheral blood of patients with multiple myeloma which correlates with disease burden. Br J Haematol 144: 686–695. PubMed

Pan X, Yuan X, Zheng Y, Wang W, Shan J, et al. (2012) Increased CD45RA+ FoxP3(low) regulatory T cells with impaired suppressive function in patients with systemic lupus erythematosus. PloS one 7: e34662. PubMed PMC

Miyara M, Yoshioka Y, Kitoh A, Shima T, Wing K, et al. (2009) Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity 30: 899–911. PubMed

Kruisbeek AM, Shevach E, Thornton AM (2004) Proliferative assays for T cell function. Current protocols in immunology/edited by John E Coligan [et al] Chapter 3: Unit 3 12. PubMed

Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, et al. (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10: 942–949. PubMed

Marshall NA, Christie LE, Munro LR, Culligan DJ, Johnston PW, et al. (2004) Immunosuppressive regulatory T cells are abundant in the reactive lymphocytes of Hodgkin lymphoma. Blood 103: 1755–1762. PubMed

Farinha P, Al-Tourah A, Gill K, Klasa R, Connors JM, et al. (2010) The architectural pattern of FOXP3-positive T cells in follicular lymphoma is an independent predictor of survival and histologic transformation. Blood 115: 289–295. PubMed

Merlo A, Casalini P, Carcangiu ML, Malventano C, Triulzi T, et al. (2009) FOXP3 expression and overall survival in breast cancer. J Clin Oncol 27: 1746–1752. PubMed

Sasada T, Kimura M, Yoshida Y, Kanai M, Takabayashi A (2003) CD4+CD25+ regulatory T cells in patients with gastrointestinal malignancies: possible involvement of regulatory T cells in disease progression. Cancer 98: 1089–1099. PubMed

Giannopoulos K, Kaminska W, Hus I, Dmoszynska A (2012) The frequency of T regulatory cells modulates the survival of multiple myeloma patients: detailed characterisation of immune status in multiple myeloma. Br J Cancer. PubMed PMC

Mizukami Y, Kono K, Kawaguchi Y, Akaike H, Kamimura K, et al. (2008) CCL17 and CCL22 chemokines within tumor microenvironment are related to accumulation of Foxp3+ regulatory T cells in gastric cancer. Int J Cancer 122: 2286–2293. PubMed

Hontsu S, Yoneyama H, Ueha S, Terashima Y, Kitabatake M, et al. (2004) Visualization of naturally occurring Foxp3+ regulatory T cells in normal and tumor-bearing mice. Int Immunopharmacol 4: 1785–1793. PubMed

Banerjee DK, Dhodapkar MV, Matayeva E, Steinman RM, Dhodapkar KM (2006) Expansion of FOXP3high regulatory T cells by human dendritic cells (DCs) in vitro and after injection of cytokine-matured DCs in myeloma patients. Blood 108: 2655–2661. PubMed PMC

Prabhala RH, Neri P, Bae JE, Tassone P, Shammas MA, et al. (2006) Dysfunctional T regulatory cells in multiple myeloma. Blood 107: 301–304. PubMed PMC

Gupta R, Ganeshan P, Hakim M, Verma R, Sharma A, et al. (2011) Significantly reduced regulatory T cell population in patients with untreated multiple myeloma. Leuk Res 35: 874–878. PubMed

Atanackovic D, Cao Y, Luetkens T, Panse J, Faltz C, et al. (2008) CD4+CD25+FOXP3+ T regulatory cells reconstitute and accumulate in the bone marrow of patients with multiple myeloma following allogeneic stem cell transplantation. Haematologica 93: 423–430. PubMed

Beyer M, Schumak B, Weihrauch MR, Andres B, Giese T, et al. (2012) In vivo expansion of naive CD4+ CD25(high) FOXP3+ regulatory T cells in patients with colorectal carcinoma after IL-2 administration. PloS one 7: e30422. PubMed PMC

Roodman GD (1997) Mechanisms of bone lesions in multiple myeloma and lymphoma. Cancer 80: 1557–1563. PubMed

Sezer O (2009) Myeloma bone disease: recent advances in biology, diagnosis, and treatment. Oncologist 14: 276–283. PubMed

Drayson M, Begum G, Basu S, Makkuni S, Dunn J, et al. (2006) Effects of paraprotein heavy and light chain types and free light chain load on survival in myeloma: an analysis of patients receiving conventional-dose chemotherapy in Medical Research Council UK multiple myeloma trials. Blood 108: 2013–2019. PubMed

Rossi F, Petrucci MT, Guffanti A, Marcheselli L, Rossi D, et al. (2009) Proposal and validation of prognostic scoring systems for IgG and IgA monoclonal gammopathies of undetermined significance. Clin Cancer Res 15: 4439–4445. PubMed

Giannopoulos K, Schmitt M, Kowal M, Wlasiuk P, Bojarska-Junak A, et al. (2008) Characterization of regulatory T cells in patients with B-cell chronic lymphocytic leukemia. Oncol Rep 20: 677–682. PubMed

Giannopoulos K, Schmitt M, Własiuk P, Chen J, Bojarska-Junak A, et al. (2008) The high frequency of T regulatory cells in patients with B-cell chronic lymphocytic leukemia is diminished through treatment with thalidomide. Leukemia 22: 222–224. PubMed

Ghiringhelli F, Larmonier N, Schmitt E, Parcellier A, Cathelin D, et al. (2004) CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur J Immunol 34: 336–344. PubMed

Takeuchi A, Eto M, Yamada H, Tatsugami K, Naito S, et al... (2011) A reduction of recipient regulatory T cells by cyclophosphamide contributes to an anti-tumor effect of nonmyeloablative allogeneic stem cell transplantation in mice. Int J Cancer. PubMed

Quach H, Ritchie D, Stewart AK, Neeson P, Harrison S, et al. (2010) Mechanism of action of immunomodulatory drugs (IMiDS) in multiple myeloma. Leukemia 24: 22–32. PubMed PMC

Galustian C, Meyer B, Labarthe MC, Dredge K, Klaschka D, et al. (2009) The anti-cancer agents lenalidomide and pomalidomide inhibit the proliferation and function of T regulatory cells. Cancer Immunol Immunother 58: 1033–1045. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...