Functionally suppressive CD8 T regulatory cells are increased in patients with multiple myeloma: a cause for immune impairment

. 2012 ; 7 (11) : e49446. [epub] 20121113

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid23152910

BACKGROUND: Multiple myeloma (MM) is a plasma cell malignancy frequently associated with impaired immune cell numbers and functions. In MM, several studies have previously shown that CD4 regulatory T (Treg) cells hamper effector T cell functions and enhance immune dysfunction. In this study, we aimed to prove the presence of functionally suppressive Treg cells expressing CD8 phenotype (CD8 Treg cells) in MM. To the best of our knowledge, this has not been reported previously in MM. METHODS: We analyzed CD8 Treg cells and their transcription factor FoxP3 from 64 newly diagnosed MM patients using flow cytometry and real time-polymerase chain reaction (RT-PCR). RNA profile of cytokines in CD8 Treg cells was also assessed using RT-PCR. CD8 Treg cells from 5 MM patients and 5 healthy donors were functionally evaluated using proliferation assays. RESULTS: CD8 Treg cells (CD8+CD25hi+) were significantly elevated in MM patients (P<0.0001), and their transcription factor FoxP3 expression was also higher in MM (P<0.0001) compared to healthy donors which was evidenced by flow cytometry and RT-PCR analyses. CD8 Treg cells negatively correlated with total lymphocyte count (P = 0.016). Functional studies revealed that CD8 Treg cells isolated from MM patients and healthy donors inhibited proliferation of CD4 T cells in a concentration dependent manner. In the presence of CD8 Treg cells in proliferation assays, level of IFN-γ was decreased but not IL-10. CD4 T cells from MM patients secreted abnormal level of IL-10 compared to healthy donors (P = 0.01) in proliferation assays without CD8 Treg cells. RNA profile of cytokines from CD8 Treg cells did not differ significantly between MM patients and healthy donors. CONCLUSIONS: These findings show the presence of increased number of functionally suppressive CD8 Treg cells in MM patients. We believe that these suppressive CD8 Treg cells might enhance immune impairment and disease progression in MM.

Zobrazit více v PubMed

Pratt G, Goodyear O, Moss P (2007) Immunodeficiency and immunotherapy in multiple myeloma. Br J Haematol 138: 563–579. PubMed

Beyer M, Kochanek M, Giese T, Endl E, Weihrauch MR, et al. (2006) In vivo peripheral expansion of naive CD4+CD25high FoxP3+ regulatory T cells in patients with multiple myeloma. Blood 107: 3940–3949. PubMed

Feyler S, von Lilienfeld-Toal M, Jarmin S, Marles L, Rawstron A, et al. (2009) CD4(+)CD25(+)FoxP3(+) regulatory T cells are increased whilst CD3(+)CD4(−)CD8(−)alphabetaTCR(+) Double Negative T cells are decreased in the peripheral blood of patients with multiple myeloma which correlates with disease burden. Br J Haematol 144: 686–695. PubMed

Brimnes MK, Vangsted AJ, Knudsen LM, Gimsing P, Gang AO, et al. (2010) Increased level of both CD4+FOXP3+ regulatory T cells and CD14+HLA-DR−/low myeloid-derived suppressor cells and decreased level of dendritic cells in patients with multiple myeloma. Scand J Immunol 72: 540–547. PubMed

Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, et al. (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10: 942–949. PubMed

Farinha P, Al-Tourah A, Gill K, Klasa R, Connors JM, et al. (2010) The architectural pattern of FOXP3-positive T cells in follicular lymphoma is an independent predictor of survival and histologic transformation. Blood 115: 289–295. PubMed

Merlo A, Casalini P, Carcangiu ML, Malventano C, Triulzi T, et al. (2009) FOXP3 expression and overall survival in breast cancer. J Clin Oncol 27: 1746–1752. PubMed

Giannopoulos K, Kaminska W, Hus I, Dmoszynska A (2012) The frequency of T regulatory cells modulates the survival of multiple myeloma patients: detailed characterisation of immune status in multiple myeloma. Br J Cancer. PubMed PMC

Tang XL, Smith TR, Kumar V (2005) Specific control of immunity by regulatory CD8 T cells. Cell Mol Immunol 2: 11–19. PubMed

Endharti AT, Rifa’I M, Shi Z, Fukuoka Y, Nakahara Y, et al. (2005) Cutting edge: CD8+CD122+ regulatory T cells produce IL-10 to suppress IFN-gamma production and proliferation of CD8+ T cells. J Immunol 175: 7093–7097. PubMed

Cosmi L, Liotta F, Lazzeri E, Francalanci M, Angeli R, et al. (2003) Human CD8+CD25+ thymocytes share phenotypic and functional features with CD4+CD25+ regulatory thymocytes. Blood 102: 4107–4114. PubMed

Chang CC, Ciubotariu R, Manavalan JS, Yuan J, Colovai AI, et al. (2002) Tolerization of dendritic cells by T(S) cells: the crucial role of inhibitory receptors ILT3 and ILT4. Nat Immunol 3: 237–243. PubMed

Kiniwa Y, Miyahara Y, Wang HY, Peng W, Peng G, et al. (2007) CD8+ Foxp3+ regulatory T cells mediate immunosuppression in prostate cancer. Clin Cancer Res 13: 6947–6958. PubMed

Li J, Huang ZF, Xiong G, Mo HY, Qiu F, et al. (2011) Distribution, characterization, and induction of CD8+ regulatory T cells and IL-17-producing CD8+ T cells in nasopharyngeal carcinoma. J Transl Med 9: 189. PubMed PMC

Chaput N, Louafi S, Bardier A, Charlotte F, Vaillant JC, et al. (2009) Identification of CD8+CD25+Foxp3+ suppressive T cells in colorectal cancer tissue. Gut 58: 520–529. PubMed

Beyer M, Schultze JL (2006) Regulatory T cells in cancer. Blood 108: 804–811. PubMed

Ishida T, Ishii T, Inagaki A, Yano H, Komatsu H, et al. (2006) Specific recruitment of CC chemokine receptor 4-positive regulatory T cells in Hodgkin lymphoma fosters immune privilege. Cancer Res 66: 5716–5722. PubMed

Yang ZZ, Novak AJ, Stenson MJ, Witzig TE, Ansell SM (2006) Intratumoral CD4+CD25+ regulatory T-cell-mediated suppression of infiltrating CD4+ T cells in B-cell non-Hodgkin lymphoma. Blood 107: 3639–3646. PubMed PMC

Sakaguchi S, Miyara M, Costantino CM, Hafler DA (2010) FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol 10: 490–500. PubMed

Ermann J, Hoffmann P, Edinger M, Dutt S, Blankenberg FG, et al. (2005) Only the CD62L+ subpopulation of CD4+CD25+ regulatory T cells protects from lethal acute GVHD. Blood 105: 2220–2226. PubMed

Filaci G, Fenoglio D, Fravega M, Ansaldo G, Borgonovo G, et al. (2007) CD8+ CD28− T regulatory lymphocytes inhibiting T cell proliferative and cytotoxic functions infiltrate human cancers. J Immunol 179: 4323–4334. PubMed

Meloni F, Morosini M, Solari N, Passadore I, Nascimbene C, et al. (2006) Foxp3 expressing CD4+ CD25+ and CD8+CD28− T regulatory cells in the peripheral blood of patients with lung cancer and pleural mesothelioma. Hum Immunol 67: 1–12. PubMed

Muthu Raja KR, Rihova L, Zahradova L, Klincova M, Penka M, et al. (2012) Increased T Regulatory Cells Are Associated with Adverse Clinical Features and Predict Progression in Multiple Myeloma. PLoS ONE 7(10): e47077 doi:10.1371/journal.pone.0047077 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...