• This record comes from PubMed

Optimization of comprehensive two-dimensional gradient chromatography coupling in-line hydrophilic interaction and reversed phase liquid chromatography

. 2012 Dec 14 ; 1268 () : 91-101. [epub] 20121026

Language English Country Netherlands Media print-electronic

Document type Evaluation Study, Journal Article, Research Support, Non-U.S. Gov't

In-line coupled comprehensive HILIC×RP systems should offer larger selectivity differences and better two-dimensional orthogonality than coupled RP×RP systems. However, this may not apply for all systems. The HILIC selectivity depends on the mix of selective polar and non-polar interactions with the functional groups, but also with the matrix of polar columns and depends on the sample type. We synthesized a new polar monolithic sulfobetaine polymethacrylate capillary column with excellent efficiency for low-molecular compounds. When used in the first, HILIC dimension coupled to core-shell or monolithic RP columns in the second dimension, this column provides much improved orthogonality for two-dimensional separations of phenolic and flavonoid compounds, in comparison to silica-bonded Diol, Polyethylene glycol or Zwitterionic columns. We investigated the performance of 11 short 5 cm and 3 cm columns for fast (1-2 min) gradient second-dimension separations. Band broadening or distortion may occur in directly coupled comprehensive HILIC×RP systems, due to strong solvent-strength differences between the mobile phases used in the first and in the second dimension. To suppress this effect, low fraction volumes were collected from a 0.5mm I.D. capillary monolithic sulfobetaine column at the flow-rate of a few microliters per min, coupled in-line with various core-shell columns operated at the maximum flow-rate. This setup with simultaneous gradient elution in the HILIC and in the RP dimension provided successful separation of natural antioxidants.

References provided by Crossref.org

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...