Important genes in the pathogenesis of 5q- syndrome and their connection with ribosomal stress and the innate immune system pathway
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
23213547
PubMed Central
PMC3504201
DOI
10.1155/2012/179402
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Myelodysplastic syndrome (MDS) with interstitial deletion of a segment of the long arm of chromosome 5q [del(5q)] is characterized by bone marrow erythroid hyperplasia, atypical megakaryocytes, thrombocythemia, refractory anemia, and low risk of progression to acute myeloid leukemia (AML) compared with other types of MDS. The long arm of chromosome 5 contains two distinct commonly deleted regions (CDRs). The more distal CDR lies in 5q33.1 and contains 40 protein-coding genes and genes coding microRNAs (miR-143, miR-145). In 5q-syndrome one allele is deleted that accounts for haploinsufficiency of these genes. The mechanism of erythroid failure appears to involve the decreased expression of the ribosomal protein S14 (RPS14) gene and the upregulation of the p53 pathway by ribosomal stress. Friend leukemia virus integration 1 (Fli1) is one of the target genes of miR145. Increased Fli1 expression enables effective megakaryopoiesis in 5q-syndrome.
Zobrazit více v PubMed
Haase D, Germing U, Schanz J, et al. New insights into the prognostic impact of the karyotype in MDS and correlation with subtypes: evidence from a core dataset of 2124 patients. Blood. 2007;110(13):4385–4395. PubMed
Hasserjian RP, Le Beau MM, List AF, et al. WHO Classification of Tumors of Haematopoietic and Lymphoid Tissues. Lyon, France: International Agency for Research on Cancer Press; 2007.
Van Den Berghe H, Cassiman JJ, David G. Distinct haematological disorder with deletion of long arm of No. 5 chromosome. Nature. 1974;251(5474):437–438. PubMed
Van Den Berghe H, Vermaelen K, Mecucci C. The 5q- anomaly. Cancer Genetics and Cytogenetics. 1985;17(3):189–255. PubMed
Nimer SD, Golde DW. The 5q-abnormality. Blood. 1987;70(6):1705–1712. PubMed
Mathew P, Tefferi A, Dewald GW, et al. The 5q- syndrome: a single-institution study of 43 consecutive patients. Blood. 1993;81(4):1040–1045. PubMed
Boultwood J, Lewis S, Wainscoat JS. The 5q- syndrome. Blood. 1994;84(10):3253–3260. PubMed
Van Den Berghe H, Michaux L. 5q-, twenty-five years later: a synopsis. Cancer Genetics and Cytogenetics. 1997;94(1):1–7. PubMed
Giagounidis AAN, Germing U, Wainscoat JS, Boultwood J, Aul C. The 5q-syndrome. Hematology. 2004;9(4):271–277. PubMed
Mohamedali A, Mufti GJ. Van-den Berghe’s 5q- syndrome in 2008. British Journal of Haematology. 2009;144(2):157–168. PubMed
Willman CL, Sever CE, Pallavicini MG, et al. Deletion of IRF-1, mapping to chromosome 5q31.1, in human leukemia and preleukemic myelodysplasia. Science. 1993;259(5097):968–971. PubMed
Boultwood J, Fidler C, Lewis S, et al. Allelic loss of IRF1 in myelodysplasia and acute myeloid leukemia: retention of IRF1 on the 5q- chromosome in some patients with the 5q- syndrome. Blood. 1993;82(9):2611–2616. PubMed
Le Beau MM, Espinosa R, Neuman WL, et al. Cytogenetic and molecular delineation of the smallest commonly deleted region of chromosome 5 in malignant myeloid diseases. Proceedings of the National Academy of Sciences of the United States of America. 1993;90(12):5484–5488. PubMed PMC
Boultwood J, Fidler C, Lewis S, et al. Molecular mapping of uncharacteristically small 5q deletions in two patients with the 5q- syndrome: delineation of the critical region on 5q and identification of a 5q- breakpoint. Genomics. 1994;19(3):425–432. PubMed
Boultwood J, Fidler C, Strickson AJ, et al. Narrowing and genomic annotation of the commonly deleted region of the 5q- syndrome. Blood. 2002;99(12):4638–4641. PubMed
Jaju RJ, Boultwood J, Oliveret FJ, et al. Molecular cytogenc definition of the critical deleted region in the 5q- syndrome. Genes Chromosomes Cancer. 1998;22:251–256. PubMed
Zhao N, Stoffel A, Wang PW, et al. Molecular delineation of the smallest commonly deleted region of chromosome 5 in malignant myeloid diseases to 1-1.5 Mb and preparation of a PAC-based physical map. Proceedings of the National Academy of Sciences of the United States of America. 1997;94(13):6948–6953. PubMed PMC
Heaney ML, Golde DW. Myelodysplasia. The New England Journal of Medicine. 1999;340(21):1649–1660. PubMed
Nilsson L, Astrand-Grundstrom I, Arvidsson I, et al. Isolation and characterization of hematopoietic progenitor/stem cells in 5q-deleted myelodysplastic syndromes: evidence for involvement at the hematopoietic stem cell level. Blood. 2000;96(6):2012–2021. PubMed
Eisenmann KM, Dykema KJ, Matheson SF, et al. 5q- myelodysplastic syndromes: chromosome 5q genes direct a tumor-suppression network sensing actin dynamics. Oncogene. 2009;28(39):3429–3441. PubMed
Boultwood J, Pellagatti A, Cattan H, et al. Gene expression profiling of CD34+ cells in patients with the 5q- syndrome. British Journal of Haematology. 2007;139(4):578–589. PubMed
Knudson AG. Mutation and cancer: statistical study of retinoblastoma. Proceedings of the National Academy of Sciences of the United States of America. 1971;68(4):820–823. PubMed PMC
Paige AJW. Redefining tumour suppressor genes: exceptions to the two-hit hypothesis. Cellular and Molecular Life Sciences. 2003;60(10):2147–2163. PubMed PMC
Ebert BL. Deletion 5q in myelodysplastic syndrome: a paradigm for the study of hemizygous deletions in cancer. Leukemia. 2009;23(7):1252–1256. PubMed
Narla A, Ebert BL. Ribosomopathies: human disorders of ribosome dysfunction. Blood. 2010;115(16):3196–3205. PubMed PMC
Tormo M, Marugán I, Calabuig M. Myelodysplastic syndromes: an update on molecular pathology. Clinical and Translational Oncology. 2010;12(10):652–661. PubMed
Davids MS, Steensma DP. The molecular pathogenesis of myelodysplastic syndromes. Cancer Biology and Therapy. 2010;10(4):309–319. PubMed
Berger AH, Pandolfi PP. Haplo-insufficiency: a driving force in cancer. Journal of Pathology. 2011;223(2):137–146. PubMed
Montaville P, Dai Y, Cheung CY, et al. Nuclear translocation of the calcium-binding protein ALG-2 induced by the RNA-binding protein RBM22. Biochimica et Biophysica Acta. 2006;1763(11):1335–1343. PubMed
Jia J, Tong C, Wang B, Luo L, Jiang J. Hedgehog signalling activity of smoothened requires phosphorylation by protein kinase A and casein kinase I. Nature. 2004;432(7020):1045–1050. PubMed
Hämmerlein A, Weiske J, Huber O. A second protein kinase CK1-mediated step negatively regulates Wnt signalling by disrupting the lymphocyte enhancer factor-1/β-catenin complex. Cellular and Molecular Life Sciences. 2005;62(5):606–618. PubMed PMC
Lehmann S, O’Kelly J, Raynaud S, Funk SE, Sage EH, Koeffler HP. Common deleted genes in the 5q-syndrome: thrombocytopenia and reduced erythroid colony formation in SPARC null mice. Leukemia. 2007;21(9):1931–1936. PubMed
Ebert BL, Pretz J, Bosco J, et al. Identification of RPS14 as a 5q- syndrome gene by RNA interference screen. Nature. 2008;451(7176):335–339. PubMed PMC
Ellis SR, Gleizes PE. Diamond Blackfan anemia: ribosomal proteins going rogue. Seminars in Hematology. 2011;48:89–96. PubMed
Valencia A, Cervera J, Such E, Sanz MA, Sanz GF. Lack of RPS14 promoter aberrant methylation supports the haploinsufficiency model for the 5q- Syndrome. Blood. 2008;112(3):p. 918. PubMed
Draptchinskaia N, Gustavsson P, Andersson B, et al. The gene encoding ribosomal protein S19 is mutated in Diamond-Blackfan anaemia. Nature Genetics. 1999;21(2):169–175. PubMed
Gazda HT, Grabowska A, Merida-Long LB, et al. Ribosomal protein S24 gene is mutated in Diamond-Blackfan anemia. American Journal of Human Genetics. 2006;79(6):1110–1118. PubMed PMC
Ganapathi KA, Shimamura A. Ribosomal dysfunction and inherited marrow failure. British Journal of Haematology. 2008;141(3):376–387. PubMed
Campagnoli MF, Ramenghi U, Armiraglio M, et al. RPS19 mutations in patients with Diamond-Blackfan anemia. Human Mutation. 2008;29(7):911–920. PubMed
Cmejla R, Cmejlova J, Handrkova H, et al. Identification of mutations in the ribosomal protein L5 (RPL5) and ribosomal protein L11 (RPL11) genes in Czech patients with diamond-blackfan anemia. Human Mutation. 2009;30(3):321–327. PubMed
Lipton JM, Ellis SR. Diamond-blackfan anemia: diagnosis, treatment, and molecular pathogenesis. Hematology/Oncology Clinics of North America. 2009;23(2):261–282. PubMed PMC
Doherty L, Sheen MR, Vlachos A, et al. Ribosomal protein genes RPS10 and RPS26 are commonly mutated in diamond-blackfan anemia. American Journal of Human Genetics. 2010;86(2):222–228. PubMed PMC
Devlin EE, DaCosta L, Mohandas N, Elliott G, Bodine DM. A transgenic mouse model demonstrates a dominant negative effect of a point mutation in the RPS19 gene associated with Diamond-Blackfan anemia. Blood. 2010;116(15):2826–2835. PubMed PMC
Hoefele J, Bertrand AM, Stehr M, et al. Disorders of sex development and Diamond-Blackfan anemia: is there an association? Pediatric Nephrology. 2010;25(7):1255–1261. PubMed
Ito E, Konno Y, Toki T, Terui K. Molecular pathogenesis in Diamond-Blackfan anemia. International Journal of Hematology. 2010;92(3):413–418. PubMed
Boria I, Garelli E, Gazda HT, et al. The ribosomal basis of diamond-blackfan anemia: mutation and database update. Human Mutation. 2010;31(12):1269–1279. PubMed PMC
Josephs HW. Anemia of infancy and early childhood. Medicine. 1936;15:307–451.
Diamond LK, Blackfan KD. Hypoplastic anemia. Am. J. Dis. Child. 1938;56:464–467.
Barlow JL, Drynan LF, Hewett DR, et al. A p53-dependent mechanism underlies macrocytic anemia in a mouse model of human 5q-syndrome. Nature Medicine. 2010;16(1):59–66. PubMed PMC
Pellagatti A, Hellström-Lindberg E, Giagounidis A, et al. Haploinsufficiency of RPS14 in 5q- syndrome is associated with deregulation of ribosomal- and translation-related genes. British Journal of Haematology. 2008;142(1):57–64. PubMed PMC
Gazda HT, Kho AT, Sanoudou D, et al. Defective ribosomal protein gene expression alters transcription, translation, apoptosis, and oncogenic pathways in Diamond-Blackfan anemia. Stem Cells. 2006;24(9):2034–2044. PubMed PMC
Sridhar K, Ross DT, Tibshirani R, Butte AJ, Greenberg PL. Relationship of differential gene expression profiles in CD34+ myelodysplastic syndrome marrow cells to disease subtype and progression. Blood. 2009;114(23):4847–4858. PubMed PMC
He H, Sun Y. Ribosomal protein S27L is a direct p53 target that regulates apoptosis. Oncogene. 2007;26(19):2707–2716. PubMed
Li J, Tan J, Zhuang L, et al. Ribosomal protein S27-like, a p53-inducible modulator of cell fate in response to genotoxic stress. Cancer Research. 2007;67(23):11317–11326. PubMed
Farquhar MJ, Bowen DT. Oxidative stress and the myelodysplastic syndromes. International Journal of Hematology. 2003;77(4):342–350. PubMed
Ghoti H, Amer J, Winder A, Rachmilewitz E, Fibach E. Oxidative stress in red blood cells, platelets and polymorphonuclear leukocytes from patients with myelodysplastic syndrome. European Journal of Haematology. 2007;79(6):463–467. PubMed
Novotna B, Bagryantseva Y, Siskova M, Neuwirtova R. Oxidative DNA damage in bone marrow cells of patients with low-risk myelodysplastic syndrome. Leukemia Research. 2009;33(2):340–343. PubMed
Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–233. PubMed PMC
Starczynowski DT, Kuchenbauer F, Argiropoulos B, et al. Identification of miR-145 and miR-146a as mediators of the 5q-syndrome phenotype. Nature Medicine. 2010;16(1):49–58. PubMed
Terpos E, Verrou E, Banti A, Kaloutsi V, Lazaridou A, Zervas K. Bortezomib is an effective agent for MDS/MPD syndrome with 5q- anomaly and thrombocytosis. Leukemia Research. 2007;31(4):559–562. PubMed
Starczynowski DT, Morin R, McPherson A, et al. Genome-wide identification of human microRNAs located in leukemia-associated genomic alterations. Blood. 2011;117:595–607. PubMed
Kumar M, Narla A, Nonami A, et al. Coordinate 1oss of a microRNA and protein-coding gene cooperate in the pathogenesis of 5q- syndrome. Blood. 2011;118:4663–4673. PubMed PMC
Boultwood J, Pellagatti A, McKenzie ANJ, Wainscoat JS. Advances in the 5q-syndrome. Blood. 2010;116(26):5803–5811. PubMed
Votavova H, Grmanova M, Dostalova Merkerova M, et al. Differential expression of microRNAs in CD34+ cells of 5q- syndrome. Journal of Hematology and Oncology. 2011;4:p. 1. PubMed PMC
Suzuki HI, Yamagata K, Sugimoto K, Iwamoto T, Kato S, Miyazono K. Modulation of microRNA processing by p53. Nature. 2009;460(7254):529–533. PubMed
Boominathan L. The guardians of the genome (p53, TA-p73, and TA-p63) are regulators of tumor suppressor miRNAs network. Cancer and Metastasis Reviews. 2010;29(4):613–639. PubMed
Ozen M, Creighton CJ, Ozdemir M, Ittmann M. Widespread deregulation of microRNA expression in human prostate cancer. Oncogene. 2008;27(12):1788–1793. PubMed
Wang Y, Lee CGL. MicroRNA and cancer—focus on apoptosis. Journal of Cellular and Molecular Medicine. 2009;13(1):12–23. PubMed PMC
Akao Y, Nakagawa Y, Naoe T. MicroRNA-143 and -145 in colon cancer. DNA and Cell Biology. 2007;26(5):311–320. PubMed
Sachdeva M, Mo YY. miR-145-mediated suppression of cell growth, invasion and metastasis. American Journal of Translational Research. 2010;2(2):170–180. PubMed PMC
Zhang J, Guo H, Zhang H, et al. Putative tumor suppressor miR-145 inhibits colon cancer cell growth by targeting oncogene friend leukemia virus integration 1 gene. Cancer. 2011;117(1):86–95. PubMed PMC
Shi B, Sepp-Lorenzino L, Prisco M, Linsley P, Deangelis T, Baserga R. Micro RNA 145 targets the insulin receptor substrate-1 and inhibits the growth of colon cancer cells. Journal of Biological Chemistry. 2007;282(45):32582–32590. PubMed
Zhang J, Guo H, Qian G, et al. MiR-145, a new regulator of the DNA Fragmentation Factor-45 (DFF45)-mediated apoptotic network. Molecular Cancer. 2010;9, article 211 PubMed PMC
Chiu CC, Lin CHMY, Fang K. Etoposide (VP-16) sensitizes p53-deficient human non-small cell lung cancer cells to caspase-7-mediated apoptosis. Apoptosis. 2005;10(3):643–650. PubMed
Liu X, Zou H, Slaughter C, Wang X. DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell. 1997;89(2):175–184. PubMed
Williams AE, Perry MM, Moschos SA, Larner-Svensson HM, Lindsay MA. Role of miRNA-146a in the regulation of the innate immune response and cancer. Biochemical Society Transactions. 2008;36(6):1211–1215. PubMed
Li L, Chen X-P, Li Y-J. MicroRNA-146a and human disease. Scandinavian Journal of Immunology. 2010;71:227–231. PubMed
Starczynowski DT, Kuchenbauer F, Wegrzyn J. MicroRNA-146a disrupts hematopoietic differentiation and survival. Experimental Hematology. 2011;39:167–178. PubMed
Cordes KR, Sheehy NT, White MP, et al. MiR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature. 2009;460(7256):705–710. PubMed PMC
Boettger T, Beetz N, Kostin S, et al. Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster. Journal of Clinical Investigation. 2009;119(9):2634–2647. PubMed PMC
Dostalova Merkerova M, Krejcik Z, Votavova H, Belickova M, Vasikova A, Cermak J. Distinctive microRNA expression profiles in CD34+ bone marrow cells from patients with myelodysplastic syndrome. European Journal of Human Genetics. 2011;19:313–319. PubMed PMC
Panić L, Montagne J, Cokarić M, Volarević S. S6-haploinsufficiency activates the p53 tumor suppressor. Cell Cycle. 2007;6(1):20–24. PubMed
Danilova N, Sakamoto KM, Lin S. Ribosomal protein S19 deficiency in zebrafish leads to developmental abnormalities and defective erythropoiesis through activation of p53 protein family. Blood. 2008;112(13):5228–5237. PubMed
Jones NC, Lynn ML, Gaudenz K, et al. Prevention of the neurocristopathy Treacher Collins syndrome through inhibition of p53 function. Nature Medicine. 2008;14(2):125–133. PubMed PMC
McGowan KA, Li JZ, Park CY, et al. Ribosomal mutations cause p53-mediated dark skin and pleiotropic effects. Nature Genetics. 2008;40(8):963–970. PubMed PMC
Barkić M, Crnomarković S, Grabušić K, et al. The p53 tumor suppressor causes congenital malformations in Rpl24-deficient mice and promotes their survival. Molecular and Cellular Biology. 2009;29(10):2489–2504. PubMed PMC
Constantinou C, Elia A, Clemens MJ. Activation of p53 stimulates proteasome-dependent truncation of elF4E-binding protein 1 (4E-BP1) Biology of the Cell. 2008;100(5):279–289. PubMed
Momand J, Wu HH, Dasgupta G. MDM2-master regulator of the p53 tumor suppressor protein. Gene. 2000;242(1-2):15–29. PubMed
Fang S, Jensen JP, Ludwig RL, Vousden KH, Weissman AM. Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. Journal of Biological Chemistry. 2000;275(12):8945–8951. PubMed
Clegg HV, Itahana K, Zhang Y. Unlocking the Mdm2-p53 loop: ubiquitin is the key. Cell Cycle. 2008;7(3):287–292. PubMed
Dai MS, Lu H. Inhibition of MDM2-mediated p53 ubiquitination and degradation by ribosomal protein L5. Journal of Biological Chemistry. 2004;279(43):44475–44482. PubMed
Lohrum MAE, Ludwig RL, Kubbutat MHG, Hanlon M, Vousden KH. Regulation of HDM2 activity by the ribosomal protein L11. Cancer Cell. 2003;3(6):577–587. PubMed
Zhang Y, Wolf GW, Bhat K, et al. Ribosomal protein L11 negatively regulates oncoprotein MDM2 and mediates a p53-dependent ribosomal-stress checkpoint pathway. Molecular and Cellular Biology. 2003;23(23):8902–8912. PubMed PMC
Bhat KP, Itahana K, Jin A, Zhang Y. Essential role of ribosomal protein L11 in mediating growth inhibition-induced p53 activation. EMBO Journal. 2004;23(12):2402–2412. PubMed PMC
Dai MS, Zeng SX, Jin Y, Sun XX, David L, Lu H. Ribosomal protein L23 activates p53 by inhibiting MDM2 function in response to ribosomal perturbation but not to translation inhibition. Molecular and Cellular Biology. 2004;24(17):7654–7668. PubMed PMC
Ofir-Rosenfeld Y, Boggs K, Michael D, Kastan MB, Oren M. Mdm2 regulates p53 mRNA translation through inhibitory interactions with ribosomal protein L26. Molecular Cell. 2008;32(2):180–189. PubMed PMC
Chen D, Zhang Z, Li M, et al. Ribosomal protein S7 as a novel modulator of p53-MDM2 interaction: binding to MDM2, stabilization of p53 protein, and activation of p53 function. Oncogene. 2007;26(35):5029–5037. PubMed
Zhang Y, Lu H. Signaling to p53: ribosomal proteins find their way. Cancer Cell. 2009;16(5):369–377. PubMed PMC
Zhang Y, Wang J, Yuan Y, et al. Negative regulation of HDM2 to attenuate p53 degradation by ribosomal protein L26. Nucleic Acids Research. 2010;38(19):6544–6554. Article ID gkq536. PubMed PMC
Pestov DG, Strezoska Z, Lau LF. Evidence of p53-dependent cross-talk between ribosome biogenesis and the cell cycle: effects of nucleolar protein Bop1 on G1/S transition. Molecular and Cellular Biology. 2001;21(13):4246–4255. PubMed PMC
Deisenroth C, Zhang Y. Ribosome biogenesis surveillance: probing the ribosomal protein-Mdm2-p53 pathway. Oncogene. 2010;29(30):4253–4260. PubMed
Gilkes DM, Chen L, Chen J. MDMX regulation of p53 response to ribosomal stress. EMBO Journal. 2006;25(23):5614–5625. PubMed PMC
Sun XX, Wang YG, Xirodimas DP, Dai MS. Perturbation of 60 S ribosomal biogenesis results in ribosomal protein L5- and L11-dependent p53 activation. Journal of Biological Chemistry. 2010;285(33):25812–25821. PubMed PMC
Pellagatti A, Marafioti T, Paterson JC, et al. Induction of p53 and up-regulation of the p53 pathway in the human 5q- syndrome. Blood. 2010;115(13):2721–2723. PubMed
Perry ME. The regulation of the p53-mediated stress response by MDM2 and MDM4. Cold Spring Harbor Perspectives in Biology. 2010;2(1, article a000968) PubMed PMC
Ho JSL, Ma W, Mao DYL, Benchimol S. p53-dependent transcriptional repression of c-myc is required for G 1 cell cycle arrest. Molecular and Cellular Biology. 2005;25(17):7423–7431. PubMed PMC
Sachdeva M, Zhu S, Wu F, et al. p53 represses c-Myc through induction of the tumor suppressor miR-145. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(9):3207–3212. PubMed PMC
Sachdeva M, Mo YY. p53 and c-myc: how does the cell balance "yin" and "yang"? Cell Cycle. 2009;8(9):p. 1303. PubMed
Truong AHL, Cervi D, Lee J, Ben-David Y. Direct transcriptional regulation of MDM2 by Fli-1. Oncogene. 2005;24(6):962–969. PubMed
Christiansen DH, Andersen MK, Pedersen-Bjergaard J. Mutations with loss of heterozygosity of p53 are common in therapy-related myelodysplasia and acute myeloid leukemia after exposure to alkylating agents and significantly associated with deletion or loss of 5q, a complex karyotype, and a poor prognosis. Journal of Clinical Oncology. 2001;19(5):1405–1413. PubMed
Pedersen-Bjergaard J, Andersen MK, Andersen MT, Christiansen DH. Genetics of therapy-related myelodysplasia and acute myeloid leukemia. Leukemia. 2008;22(2):240–248. PubMed
Jädersten M, Saft L, Pellagatti A, et al. Clonal heterogeneity in the 5q- syndrome: P53 expressing progenitors prevail during lenalidomide treatment and expand at disease progression. Haematologica. 2009;94(12):1762–1766. PubMed PMC
Jädersten M, Saft L, Smith A, et al. TP53 mutations in low-risk myelodysplastic syndromes with del(5q) predict dinase progression. Journal of Clinical Oncology. 2011;29:1971–1979. PubMed
Lim CM, Cater MA, Mercer JFB, La Fontaine S. Copper-dependent interaction of dynactin subunit p62 with the N terminus of ATP7B but not ATP7A. Journal of Biological Chemistry. 2006;281(20):14006–14014. PubMed
Patel SR, Richardson JL, Schulze H, et al. Differential roles of microtubule assembly and sliding in proplatelet formation by megakaryocytes. Blood. 2005;106(13):4076–4085. PubMed PMC
Italiano JE, Jr., Patel-Hett S, Hartwig JH. Mechanics of proplatelet elaboration. Journal of Thrombosis and Haemostasis. 2007;5, supplement 1:18–23. PubMed
He F, Wang CT, Gou LT. RNA-binding motif protein RBM22 is required for normal development of zebrafish embryos. Genetics and Molecular Research. 2009;8(4):1466–1473. PubMed
Grisendi S, Bernardi R, Rossi M, et al. Role of nucleophosmin in embryonic development and tumorigenesis. Nature. 2005;437(7055):147–153. PubMed
Grisendi S, Mecucci C, Falini B, Pandolfi PP. Nucleophosmin and cancer. Nature Reviews Cancer. 2006;6(7):493–505. PubMed
Sportoletti P, Grisendi S, Majid SM, et al. Npm1 is a haploinsufficient suppressor of myeloid and lymphoid malignancies in the mouse. Blood. 2008;111(7):3859–3862. PubMed PMC
Cazzaniga G, Dell’Oro MG, Mecucci C, et al. Nucleophosmin mutations in childhood acute myelogenous leukemia with normal karyotype. Blood. 2005;106(4):1419–1422. PubMed
Rau R, Brown P. Nucleophosmin (NPM1) mutations in adult and childhood acute myeloid leukaemia: towards definition of a new leukaemia entity. Hematological Oncology. 2009;27(4):171–181. PubMed PMC
Walter MJ. Del(5q): gene dosage matters. Blood. 2007;110(2):473–474.
Neuwirtova R, Fuchs O, Provaznikova D, et al. Fli-1 and EKLF gene expression in patients with MDS 5q- syndrome. Blood. 2009;114:1090–1091. abstract no. 2788, Proceedings of the 51st Annual Meeting of the American Society of Hematology, December 5–8, 2009, New Orleans, La, USA.
Neuwirtova R, Fuchs O, Jonasova A, et al. The role of Fli-1 and EKLF gene expression in 5q- syndrome compared to MDS low risk with normal chromosome 5. In: Proceedings of the XXXIII World Congress of the International Society of Hematology; Jerusalem, Israel. abstract no. 114, October 2010.
Ben-David Y, Giddens EB, Letwin K, Bernstein A. Erythroleukemia induction by Friend murine leukemia virus: insertional activation of a new member of the ets gene family, Fli-1, closely linked to c-ets-1. Genes and Development. 1991;5(6):908–918. PubMed
Watson DK, Smyth FE, Thompson DM, et al. The ERGB/Fli-1 gene: isolation and characterization of a new member of the family of human ETS transcription factors. Cell Growth and Differentiation. 1992;3(10):705–713. PubMed
Prasad DDK, Rao VN, Reddy ESP. Structure and expression of human Fli-1 gene. Cancer Research. 1992;52(20):5833–5837. PubMed
Selleri L, Giovannini M, Romo A, et al. Cloning of the entire FLI1 gene, disrupted by the Ewing’s sarcoma translocation breakpoint on 11q24, in a yeast artificial chromosome. Cytogenetics and Cell Genetics. 1994;67(2):129–136. PubMed
Starck J, Cohet N, Gonnet C, et al. Functional cross-antagonism between transcription factors FLI-1 and EKLF. Molecular and Cellular Biology. 2003;23(4):1390–1402. PubMed PMC
Eisbacher M, Holmes ML, Newton A, et al. Protein-protein interaction between Fli-1 and GATA-1 mediates synergistic expression of megakaryocyte-specific genes through cooperative DNA binding. Molecular and Cellular Biology. 2003;23(10):3427–3441. PubMed PMC
Jackers P, Szalai G, Moussa O, Watson DK. Ets-dependent regulation of target gene expression during megakaryopoiesis. Journal of Biological Chemistry. 2004;279(50):52183–52190. PubMed
Svenson JL, Chike-Harris K, Amria MY, Nowling TK. The mouse and human Fli1 genes are similarly regulated by Ets factors in T cells. Genes and Immunity. 2010;11(2):161–172. PubMed PMC
Starck J, Doubeikovski A, Sarrazin S, et al. Spi-1/PU.1 Is a positive regulator of the Fli-1 gene involved in inhibition of erythroid differentiation in friend erythroleukemic cell lines. Molecular and Cellular Biology. 1999;19(1):121–135. PubMed PMC
Rekhtman N, Radparvar F, Evans T, Skoultchi AI. Direct interaction of hematopoietic transcription factors PU.1 and GATA- 1: functional antagonism in erythroid cells. Genes and Development. 1999;13(11):1398–1411. PubMed PMC
Zhang P, Zhang X, Iwama A, et al. PU.1 inhibits GATA-1 function and erythroid differentiation by blocking GATA-1 DNA binding. Blood. 2000;96(8):2641–2648. PubMed
Juban G, Giraud G, Guyot B, et al. Spi-1 and Fli-1 directly activate common target genes involved in ribosome biogenesis in friend erythroleukemic cells. Molecular and Cellular Biology. 2009;29(10):2852–2864. PubMed PMC
Starczynowski DT, Karsan A. Innate immune signaling in the myelodysplastic syndromes. Hematology/Oncology Clinics of North America. 2010;24:343–359. PubMed
Hodge DR, Xiao W, Clausen PA, Heidecker G, Szyf M, Farrar WL. Interleukin-6 regulation of the human DNA methyltransferase (HDNMT) gene in human erythroleukemia cells. Journal of Biological Chemistry. 2001;276(43):39508–39511. PubMed
Hodge DR, Li D, Qi SM, Farrar WL. IL-6 induces expression of the Fli-1 proto-oncogene via STAT3. Biochemical and Biophysical Research Communications. 2002;292:287–291. PubMed
Tallack MR, Whitington T, Yuen WS, et al. A global role for KLF1 in erythropoiesis revealed by ChIP-seq in primary erythroid cells. Genome Research. 2010;20(8):1052–1063. PubMed PMC
Siatecka M, Bieker JJ. The multifunctional role of EKLF/KLF1 during erythropoiesis. Blood. 2011;118:2044–2054. PubMed PMC
Doré LC, Crispino JD. Transcription factor in erythroid cell and megakaryocyte development. Blood. 2011;118:231–239. PubMed PMC
Borg J, Papadopoulos P, Georgitsi M, et al. Haploinsufficiency for the erythroid transcription factor KLF1 causes hereditary persistence of fetal hemoglobin. Nature Genetics. 2010;42(9):801–805. PubMed PMC
Frontelo P, Manwani D, Galdass M, et al. Novel role for EKLF in megakaryocyte lineage commitment. Blood. 2007;110(12):3871–3880. PubMed PMC
Bouilloux F, Juban G, Cohet N, et al. EKLF restricts megakaryocytic differentiation at the benefit of erythrocytic differentiation. Blood. 2008;112(3):576–584. PubMed
Klimchenko O, Mori M, DiStefano A, et al. A common bipotent progenitor generates the erythroid and megakaryocyte lineages in embryonic stem cell-derived primitive hematopoiesis. Blood. 2009;114(8):1506–1517. PubMed
Tallack MR, Perkins AC. Megakaryocyte-erythroid lineage promiscuity in EKLF null mouse blood. Haematologica. 2010;95(1):144–147. PubMed PMC
Dutt S, Narla A, Lin K, et al. Haploinsufficiency for ribosomal protein genes causes selective activation of p53 in human erythroid progenitor cells. Blood. 2011;117(9):2567–2576. PubMed PMC
Cazzola M. Myelodysplastic syndrome with isolated 5q deletion (5q- syndrome). A clonal stem cell disorder characterized by defective ribosome biogenesis. Haematologica. 2008;93(7):967–972. PubMed
Barlow JL, Drynan LF, Trim NL, Erber WN, Warren AJ, McKenzie ANJ. New insights into 5q- syndrome as a ribosomopathy. Cell Cycle. 2010;9(21):4286–4293. PubMed
Liu Y, Elf SE, Miyata Y, et al. p53 regulates hematopoietic stem cell quiescence. Cell Stem Cell. 2009;4(1):37–48. PubMed PMC
Liu Y, Elf SE, Asai T, et al. The p53 tumor suppressor protein is a critical regulator of hematopoietic stem cell behavior. Cell Cycle. 2009;8(19):3120–3124. PubMed PMC
Wattel E, Preudhomme C, Hecquet B, et al. p53 Mutations are associated with resistance to chemotherapy and short survival in hematologic malignancies. Blood. 1994;84(9):3148–3157. PubMed
Kita-Sasai Y, Horiike S, Misawa S, et al. International prognostic scoring system and TP53 mutations are independent prognostic indicators for patients with myelodysplastic syndrome. British Journal of Haematology. 2001;115(2):309–312. PubMed
Horiike S, Kita-Sasai Y, Nakao M, Taniwaki M. Configuration of the TP53 gene as an independent prognostic parameter of myelodysplastic syndrome. Leukemia and Lymphoma. 2003;44(6):915–922. PubMed
Garderet L, Kobari L, Mazurier C, et al. Unimpaired terminal erythroid differentiation and preserved enucleation capacity in myelodysplastic 5q(del) clones: a single cell study. Haematologica. 2010;95(3):398–405. PubMed PMC
Neildez-Nguyen TMA, Wajcman H, Marden MC, et al. Human erythroid cells produced ex vivo at large scale differentiate into red blood cells in vivo. Nature Biotechnology. 2002;20(5):467–472. PubMed
Giarratana MC, Kobari L, Lapillonne H, et al. Ex vivo generation of fully mature human red blood cells from hematopoietic stem cells. Nature Biotechnology. 2005;23(1):69–74. PubMed
Jädersten M. Pathophysiology and treatment of the myelodysplastic syndrome with isolated 5q deletion. Haematologica. 2010;95(3):348–351. PubMed PMC
Virgilio M, Payne E, Narla A, et al. Treatment of zebrafish models of ribosomopathies (Diamond Blackfan anemia (DBA) and 5q-syndrome with Lleucine results in an improvement of anemia and development defects: evidence for a common pathway. Blood. 2010;116, abstract 195:89–90.
Cmejlova J, Dolezalova L, Pospisilova D, Petrtylova K, Petrak J, Cmejla R. Translational efficiency in patients with Diamond-Blackfan anemia. Haematologica. 2006;91(11):1456–1464. PubMed
Anthony JC, Anthony TG, Kimball SR, Vary TC, Jefferson LS. Orally administered leucine stimulates protein synthesis in skeletal muscle of postabsorptive rats in association with increased elF4F formation. Journal of Nutrition. 2000;130(2):139–145. PubMed
Lynch CJ, Patson BJ, Anthony J, et al. Leucine is a direct-acting nutrient signal that regulates protein synthesis in adipose tissue. American Journal of Physiology. 2002;283:E506–E513. PubMed
Norton LE, Layman DK. Leucine regulates translation initiation of protein synthesis in skeletal muscle after excercise. Journal of Nutrition. 2006;136:533S–537S. PubMed
Escobar J, Frank JW, Suryawan A, et al. Amino acid availability and age affect the leucine stimulation of protein synthesis and eIF4F formation in muscle. American Journal of Physiology. 2007;293:E1615–E1621. PubMed PMC
Pospisilova D, Cmejlova J, Hak J, Adam T, Cmejla R. Successful treatment of a Diamond-Blackfan anemia patient with amino acid leucine. Haematologica. 2007;92(5):e66–67. PubMed
List A, Dewald G, Bennett J, et al. Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion. The New England Journal of Medicine. 2006;355(14):1456–1465. PubMed
Melchert M, Kale V, List A. The role of lenalidomide in the treatment of patients with chromosome 5q deletion and other myelodysplastic syndromes. Current Opinion in Hematology. 2007;14(2):123–129. PubMed
List AF. Lenalidomide—the phoenix rises. The New England Journal of Medicine. 2007;357(21):2183–2186. PubMed
Kurtin S, List A. Durable long-term responses in patients with myelodysplastic syndromes treated with lenalidomide. Clinical Lymphoma and Myeloma. 2009;9(3):E10–E13. PubMed
Komrojki RS, List AF. Lenalidomide for teatment of myelodysplastic syndromes: current status and future directions. Hematology/Oncology Clinics of North America. 2010;24:377–388. PubMed
Post SM, Quintás-Cardama A. Closing in on the pathogenesis of the 5q- syndrome. Expert Review of Anticancer Therapy. 2010;10(5):655–658. PubMed
Raza A, Reeves JA, Feldman EJ, et al. Phase 2 study of lenalidomide in transfusion-dependent, low-risk, and intermediate-1-risk myelodysplastic syndromes with karyotypes other than deletion 5q. Blood. 2008;111(1):86–93. PubMed
Ebert BL, Galili N, Tamayo P, et al. An erythroid differentiation signature predicts response to lenalidomide in myelodysplastic syndrome. PLoS Medicine. 2008;5(2):0312–0322. PubMed PMC
Chen C, Bowen DT, Giagounidis AAN, Schlegelberger B, Haase S, Wright EG. Identification of disease- and therapy-associated proteome changes in the sera of patients with myelodysplastic syndromes and del(5q) Leukemia. 2010;24(11):1875–1884. PubMed
Wei S, Chen X, Rocha K, et al. A critical role for phosphatase haplodeficiency in the selective suppression of deletion 5q MDS by lenalidomide. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(31):12974–12979. PubMed PMC
Kimura SH, Nojima H. Cyclin G1 associates with MDM2 and regulates accumulation and degradation of p53 protein. Genes to Cells. 2002;7(8):869–880. PubMed
Zhang XK, Watson DK. The FLI-1 transcription factor is a short-lived phosphoprotein in T cells. Journal of Biochemistry. 2005;137(3):297–302. PubMed
Bartlett JB, Dredge K, Dalgleish AG. The evolution of thalidomide and its IMiD derivatives as anticancer agents. Nature Reviews Cancer. 2004;4(4):314–322. PubMed
Pellagatti A, Jädersten M, Forsblom AM, et al. Lenalidomide inhibits the malignant clone and up-regulates the SPARC gene mapping to the commonly deleted region in 5q- syndrome patients. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(27):11406–11411. PubMed PMC
Oliva EN, Cuzzola M, Nobile F, et al. Changes in RPS14 expression levels during lenalidomide treatment in Low- and Intermediate-1-risk myelodysplastic syndromes with chromosome 5q deletion. European Journal of Haematology. 2010;85(3):231–235. PubMed
Venner CP, List AF, Nevill TJ, et al. Induction of micro RNA-143 and 145 in pre-treatment CD34+ cells from patients with myelodysplastic syndrome (MDS) after in vitro exposure to lenalidomide correlates with clinical response in patients harboring the del5q abnormality. Blood. 2010;116, abstract 123:p. 60.
Ximeri M, Galanopoulos A, Klaus M, et al. Effect of lenalidomide therapy on hematopoiesis of patients with myelodysplastic syndrome associated with chromosome 5q deletion. Haematologica. 2010;95(3):406–414. PubMed PMC
Tehranchi R, Woll PS, Anderson K, et al. Persistent malignant stem cells in del(5q) myelodysplasia in remission. The New England Journal of Medicine. 2010;363(11):1025–1037. PubMed