Comparison of antibiotic resistance patterns in collections of Escherichia coli and Proteus mirabilis uropathogenic strains

. 2013 Apr ; 40 (4) : 3429-35. [epub] 20130104

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid23283741

Escherichia coli and Proteus mirabilis are important urinary tract pathogens. The constant increase in the antibiotic resistance of clinical bacterial strains has become an important clinical problem. The aim of this study was to compare the antibiotic resistance of 141 clinical (Sweden and Poland) and 42 laboratory (Czech Republic) P. mirabilis strains and 129 clinical (Poland) uropathogenic E. coli strains. The proportion of unique versus diverse patterns in Swedish clinical and laboratory P. mirabilis strain collections was comparable. Notably, a similar proportion of unique versus diverse patterns was observed in Polish clinical P. mirabilis and E. coli strain collections. Mathematical models of the antibiotic resistance of E. coli and P. mirabilis strains based on Kohonen networks and association analysis are presented. In contrast to the three clinical strain collections, which revealed complex associations with the antibiotics tested, laboratory P. mirabilis strains provided simple antibiotic association diagrams. The monitoring of antibiotic resistance patterns of clinical E. coli and P. mirabilis strains plays an important role in the treatment procedures for urinary tract infections and is important in the context of the spreading drug resistance in uropathogenic strain populations. The adaptability and flexibility of the genomes of E. coli and P. mirabilis strains are discussed.

Zobrazit více v PubMed

Mazzulli T. Resistance trends in urinary tract pathogens and impact on management. J Urol. 2002;168:1720–17222. doi: 10.1016/S0022-5347(05)64397-2. PubMed DOI

Schollum JB, Walker RJ. Adult urinary tract infection. Br J Hosp Med. 2012;73:218–223. PubMed

Rozalski A, Sidorczyk Z, Kotelko K. Potential virulence factors of Proteus bacilli. Microbiol Mol Biol Rev. 1997;61:65–89. PubMed PMC

Daza R, Gutierrez J, Piedrola G. Antibiotic susceptibility of bacterial strains isolated from patients with community-acquired urinary tract infections. Int J Antimicrob Agents. 2001;18:211–215. doi: 10.1016/S0924-8579(01)00389-2. PubMed DOI

Lindsay E, Nicolle MD. Resistant pathogens in urinary tract infections. J Am Geriatr Soc. 2002;50:230–235. PubMed

Silveira WD, Benetti F, Lancellotti M, Ferreira A, Solferini VN, Brocchi M. Biological and genetic characteristics of uropathogenic Escherichia coli strains. Rev Inst Med Trop. 2001;43:303–310. doi: 10.1590/S0036-46652001000600001. PubMed DOI

Karlowsky JA, Kelly LJ, Thornsberry C, Jones ME, Sahm DF. Trends in antimicrobial resistance among urinary tract infection isolates of Escherichia coli from female outpatients in the United States. Antimicrob Agents Chemother. 2002;46:2540–2545. doi: 10.1128/AAC.46.8.2540-2545.2002. PubMed DOI PMC

Pagani L, Migliavacca R, Pallecchi L, Matti C, Giacobone E, Amicosante G, Romero E. Emerging extended-spectrum beta-lactamases in Proteus mirabilis. J Clin Microbiol. 2002;40:1549–1552. doi: 10.1128/JCM.40.4.1549-1552.2002. PubMed DOI PMC

Khan AU, Musharraf A. Plasmid-mediated multiple antibiotic resistance in Proteus mirabilis isolated from patients with urinary tract infection. Med Sci Monit. 2004;10:598–602. PubMed

Garcia-Rodriguez JA, Jones RN. Antimicrobial resistance in gram-negative isolates from European intensive care units: data from the Meropenem yearly susceptibility test information collection (MYSTIC) programme. J Chemother. 2002;14:25–32. PubMed

Empel J, Baraniak A, Literacka E, Mrówka A, Fiett J, Sadowy E, Hryniewicz W, Gniadkowski M. Molecular survey of beta-lactamases conferring resistance to newer beta-lactams in Enterobacteriaceae isolates from Polish hospitals. Antimicrob Agents Chemother. 2008;52:2449–2454. doi: 10.1128/AAC.00043-08. PubMed DOI PMC

Bonten MJM, Austin DJ, Lipsitch M. Understanding the spread of antibiotic resistant pathogens in hospitals: mathematical models as tools for control. Clin Infect Dis. 2001;33:1739–1746. doi: 10.1086/323761. PubMed DOI

Bootsma MCJ. (2005) Mathematical studies of the dynamics of antibiotic resistance. Proefschrift ter verkrijging van de graad van doctor aan de Universiteit Utrecht

Tavare S (2001) Ancestral Inference in Population Genetics. In: Proceedings of saint flour summer school in probability and statistics, Saint Flour, Springer lecture notes in mathematics

National Committee for Clinical Laboratory Standards (NCCLS) (1997) Performance standards for antimicrobial disc susceptibility test, 6th edn. Approved Standard: M2-A6 and Supplemental Tables M100-S7

Adamus-Bialek W, Wojtasik A, Majchrzak M, Sosnowski M, Parniewski P. (CGG)4-based PCR as a novel tool for discrimination of uropathogenic Escherichia coli strains: comparison with enterobacterial repetitive intergenic consensus-PCR. J Clin Microbiol. 2009;47:3937–3944. doi: 10.1128/JCM.01036-09. PubMed DOI PMC

Horcajada JP, Soto S, Gajewski A, Smithson A, Jimenez de Anta MT, Mensa J, Vila J, Johnson JR. Quinolone-resistant uropathogenic Escherichia coli strains from phylogenetic group B2 have fewer virulence factors than their susceptible counterparts. J Clin Microbiol. 2005;43:2962–2964. doi: 10.1128/JCM.43.6.2962-2964.2005. PubMed DOI PMC

Moreno E, Prats G, Sabate M, Perez T, Johnson JR, Andreu A. Quinolone, fluoroquinolone and trimethoprim/sulfamethoxazole resistance in relation to virulence determinants and phylogenetic background among uropathogenic Escherichia coli. J Antimicrob Chemother. 2006;57:204–211. doi: 10.1093/jac/dki468. PubMed DOI

Lipsitch M, Bergstrom CT, Levin BR. The epidemiology of antibiotic resistance in hospitals: paradoxes and prescriptions. Proc Natl Acad Sci USA. 2000;97:1938–1943. doi: 10.1073/pnas.97.4.1938. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...