S-nitrosoglutathione covalently modifies cysteine residues of human carbonyl reductase 1 and affects its activity
Jazyk angličtina Země Irsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23295225
DOI
10.1016/j.cbi.2012.12.011
PII: S0009-2797(12)00281-5
Knihovny.cz E-zdroje
- MeSH
- alkoholoxidoreduktasy metabolismus MeSH
- cystein metabolismus MeSH
- daunomycin metabolismus farmakologie MeSH
- hexanony metabolismus farmakologie MeSH
- kinetika MeSH
- lidé MeSH
- molekulární sekvence - údaje MeSH
- naftochinony metabolismus farmakologie MeSH
- oxidace-redukce účinky léků MeSH
- pyridiny metabolismus farmakologie MeSH
- S-nitrosoglutathion metabolismus farmakologie MeSH
- sekvence aminokyselin MeSH
- vitamin K 3 metabolismus farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 1,4-naphthoquinone MeSH Prohlížeč
- 2,3-hexanedione MeSH Prohlížeč
- 4-benzoylpyridine MeSH Prohlížeč
- alkoholoxidoreduktasy MeSH
- CBR1 protein, human MeSH Prohlížeč
- cystein MeSH
- daunomycin MeSH
- hexanony MeSH
- naftochinony MeSH
- pyridiny MeSH
- S-nitrosoglutathion MeSH
- vitamin K 3 MeSH
Carbonyl reductase 1 (CBR1 or SDR21C1) is a ubiquitously-expressed, cytosolic, monomeric, and NADPH-dependent enzyme. CBR1 participates in apoptosis, carcinogenesis and drug resistance, and has a protective role in oxidative stress, cancer and neurodegeneration. S-Nitrosoglutathione (GSNO) represents the newest addition to its diverse substrate spectrum, which includes a wide range of xenobiotics and endogenous substances. GSNO has also been shown to covalently modify and inhibit CBR1. The aim of the present study was to quantify and characterize the resulting modifications. Of five candidate cysteines for modification by 2 mM GSNO (positions 26, 122, 150, 226, 227), the last four were analyzed using MALDI-TOF/TOF mass spectrometry and then quantified using the Selected Reaction Monitoring Approach on hyphenated HPLC with a triple quadrupole mass spectrometer. The analysis confirmed GSNO concentration-dependent S-glutathionylation of cysteines at positions 122, 150, 226, 227 which was 2-700 times higher compared to wild-type CBR1 (WT-CBR1). Moreover, a disulfide bond between neighboring Cys-226 and Cys-227 was detected. We suggest a role of these two cysteines as a redox-sensitive cysteine pair. The catalytic properties of wild-type and enzyme modified with 2 mM GSNO were also investigated by steady state kinetic experiments with various substrates. GSNO treatment of CBR1 resulted in a 2-5-fold decrease in kcat with menadione, 4-benzoylpyridine, 2,3-hexanedione, daunorubicin and 1,4-naphthoquinone. In contrast, the same treatment increased kcat for substrates containing a 1,2-diketo group in a ring structure (1,2-naphthoquinone, 9,10-phenanthrenequinone, isatin). Except for 9,10-phenanthrenequinone, all changes in kcat were at least in part compensated for by a similar change in Km, overall yielding no drastic changes in catalytic efficiency. The findings indicate that GSNO-induced covalent modification of cysteine residues affects the kinetic mechanism of CBR1 both in terms of substrate binding and turnover rate, probably by covalent modification of Cys-226 and/or Cys-227.
Citace poskytuje Crossref.org