Changes in the nanoparticle aggregation rate due to the additional effect of electrostatic and magnetic forces on mass transport coefficients
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články
PubMed
23302651
PubMed Central
PMC3606468
DOI
10.1186/1556-276x-8-20
PII: 1556-276X-8-20
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
: The need may arise to be able to simulate the migration of groundwater nanoparticles through the ground. Transportation velocities of nanoparticles are different from that of water and depend on many processes that occur during migration. Unstable nanoparticles, such as zero-valent iron nanoparticles, are especially slowed down by aggregation between them. The aggregation occurs when attracting forces outweigh repulsive forces between the particles. In the case of iron nanoparticles that are used for remediation, magnetic forces between particles contribute to attractive forces and nanoparticles aggregate rapidly. This paper describes the addition of attractive magnetic forces and repulsive electrostatic forces between particles (by 'particle', we mean both single nanoparticles and created aggregates) into a basic model of aggregation which is commonly used. This model is created on the basis of the flow of particles in the proximity of observed particles that gives the rate of aggregation of the observed particle. By using a limit distance that has been described in our previous work, the flow of particles around one particle is observed in larger spacing between the particles. Attractive magnetic forces between particles draw the particles into closer proximity and result in aggregation. This model fits more closely with rapid aggregation which occurs between magnetic nanoparticles.
Zobrazit více v PubMed
Kanchana A, Devarajan S, Rathakrishnan Ayyappan S. Green synthesis and characterization of palladium nanoparticles and its conjugates from Solanum trilobatum leaf extract. Nano-Micro Lett. 2010;2(3):169–176.
Alonso U, Missana T. Role of inorganic colloids generated in a high-level deep geological repository in the migration of radionuclides: open questions. J Iberian Geol. 2006;32:79–94.
Matsunaga T, Nagao S, Ueno T, Takeda S, Amano H, Tkachenko Y. Association of dissolved radionuclides released by the Chernobyl accident with colloidal materials in surface water. Appl Geochem. 2004;19(10):1581–1599. doi: 10.1016/j.apgeochem.2004.02.002. DOI
Li L, Fan M, Brown RC, Van Leeuwen JH, Wang J, Wang W, Song Y, Zhang P. Synthesis, properties, and environmental applications of nanoscale iron-based materials: a review. Crit Rev in Environ Sci Technol. 2006;36(5):405–431. doi: 10.1080/10643380600620387. DOI
Nurmi JT, Tratnyek PG, Sarathy V, Baer DR, Amonette JE, Pecher K, Wang C, Linehan JC, Matson DW, Penn RL, Driessen MD. Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environ Sci Technol. 2005;39(5):1221–1230. doi: 10.1021/es049190u. PubMed DOI
Filip J, Zboril R, Schneeweiss O, Zeman J, Cernik M, Kvapil P, Otyepka M. Environmental applications of chemically pure natural ferrihydrite. Environ Sci Technol. 2007;41(12):4367–4374. doi: 10.1021/es062312t. PubMed DOI
Zhang WX. Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res. 2003;5(3):323–332. doi: 10.1023/A:1025520116015. DOI
Camp TR. Velocity Gradients in Internal Work in Fluid Motion. Cambridge: MIT; 1943.
Smoluchowski M. Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen. Z Phys Chem. 1917;92:129–168.
Buffle J, van Leeuwen HP. Environmental Particles. Chelsea: Lewis Publishers; 1992.
Somasundaran P, Runkana V. Modeling flocculation of colloidal mineral suspensions using population balances. Int J Mineral Process. 2003;72(1–4):33–55.
Sun Y, Li Xq, Cao J, Zhang Wx, Wang HP. Characterization of zero-valent iron nanoparticles. Adv Colloid Interface Sci. 2006;120(1–3):47–56. PubMed
Horak D, Petrovsky E, Kapicka A, Frederichs T. Synthesis and characterization of magnetic poly(glycidyl methacrylate) microspheres. J Magn Magn Mater. 2007;311(2):500–506. doi: 10.1016/j.jmmm.2006.08.006. DOI
Masheva V, Grigorova M, Nihtianova D, Schmidt JE, Mikhov M. Magnetization processes of small gamma-Fe2O3 particles in non-magnetic matrix. J Phys D: Appl Phys. 1999;32(14):1595–1599. doi: 10.1088/0022-3727/32/14/308. DOI
Phenrat T, Saleh N, Sirk K, Tilton RD, Lowry GV. Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ Sci Technol. 2007;41:284–290. doi: 10.1021/es061349a. PubMed DOI
Wang J, Wei LM, Liu P, Wei H, Zhang YF. Synthesis of Ni nanowires via a hydrazine reduction route in aqueous ethanol solutions assisted by external magnetic fields. NanoMicro Lett. 2010;1:49–52.
Einstein A. On the movement of small particles suspended in stationary liquids required by the molecular-kinetic theory of heat. Annalen der Physik. 1905;17:549–560.
Votruba V, Muzikar C. Teorie Elektromagnetickeho Pole. Praha: Akademia Karolinum; 1958.
Rosicka D, Sembera J. Assessment of influence of magnetic forces on aggregation of zero-valent iron nanoparticles. Nanoscale Res Lett. 2010;6:10. PubMed PMC
Sembera J, Rosicka D. Computational methods for assessment of magnetic forces between iron nanoparticles and their influence on aggregation. Adv Sci Eng Med. 2011;3(1,2):149–154.
Rosicka D, Sembera J. Influence of structure of iron nanoparticles in aggregates on their magnetic properties. Nanoscale Res Lett. 2011;6:527. doi: 10.1186/1556-276X-6-527. PubMed DOI PMC
Stumm W, Morgan JJ. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters. New York: Wiley; 1996.
Dzombak DA, Morel FMM. Surface Complexation Modeling: Hydrous Ferric Oxide. 1st edition. New York: Wiley-Interscience; 1990.
Lyklema J. Fundamentals of Interface and Colloid Science. Amsterdam: Academic Press; 2005.
Sedlak B, Stoll I, Man O. Elektrina a magnetismus. Praha: Academia Karolinum; 1993.